6 research outputs found

    Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition

    Full text link
    Product reviews and ratings on e-commerce websites provide customers with detailed insights about various aspects of the product such as quality, usefulness, etc. Since they influence customers' buying decisions, product reviews have become a fertile ground for abuse by sellers (colluding with reviewers) to promote their own products or to tarnish the reputation of competitor's products. In this paper, our focus is on detecting such abusive entities (both sellers and reviewers) by applying tensor decomposition on the product reviews data. While tensor decomposition is mostly unsupervised, we formulate our problem as a semi-supervised binary multi-target tensor decomposition, to take advantage of currently known abusive entities. We empirically show that our multi-target semi-supervised model achieves higher precision and recall in detecting abusive entities as compared to unsupervised techniques. Finally, we show that our proposed stochastic partial natural gradient inference for our model empirically achieves faster convergence than stochastic gradient and Online-EM with sufficient statistics.Comment: Accepted to the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2019. Contains supplementary material. arXiv admin note: text overlap with arXiv:1804.0383

    Directional Multivariate Ranking

    Full text link
    User-provided multi-aspect evaluations manifest users' detailed feedback on the recommended items and enable fine-grained understanding of their preferences. Extensive studies have shown that modeling such data greatly improves the effectiveness and explainability of the recommendations. However, as ranking is essential in recommendation, there is no principled solution yet for collectively generating multiple item rankings over different aspects. In this work, we propose a directional multi-aspect ranking criterion to enable a holistic ranking of items with respect to multiple aspects. Specifically, we view multi-aspect evaluation as an integral effort from a user that forms a vector of his/her preferences over aspects. Our key insight is that the direction of the difference vector between two multi-aspect preference vectors reveals the pairwise order of comparison. Hence, it is necessary for a multi-aspect ranking criterion to preserve the observed directions from such pairwise comparisons. We further derive a complete solution for the multi-aspect ranking problem based on a probabilistic multivariate tensor factorization model. Comprehensive experimental analysis on a large TripAdvisor multi-aspect rating dataset and a Yelp review text dataset confirms the effectiveness of our solution.Comment: Accepted as a full research paper in KDD'2
    corecore