792 research outputs found

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science

    A scalable, efficient scheme for evaluation of stencil computations over unstructured meshes

    Get PDF
    pre-printStencil computations are a common class of operations that appear in many computational scientific and engineering applications. Stencil computations often benefit from compile-time analysis, exploiting data-locality, and parallelism. Post-processing of discontinuous Galerkin (dG) simulation solutions with B-spline kernels is an example of a numerical method which requires evaluating computationally intensive stencil operations over a mesh. Previous work on stencil computations has focused on structured meshes, while giving little attention to unstructured meshes. Performing stencil operations over an unstructured mesh requires sampling of heterogeneous elements which often leads to inefficient memory access patterns and limits data locality/reuse. In this paper, we present an efficient method for performing stencil computations over unstructured meshes which increases data-locality and cache efficiency, and a scalable approach for stencil tiling and concurrent execution. We provide experimental results in the context of post-processing of dG solutions that demonstrate the effectiveness of our approach

    Cinema Darkroom: A Deferred Rendering Framework for Large-Scale Datasets

    Full text link
    This paper presents a framework that fully leverages the advantages of a deferred rendering approach for the interactive visualization of large-scale datasets. Geometry buffers (G-Buffers) are generated and stored in situ, and shading is performed post hoc in an interactive image-based rendering front end. This decoupled framework has two major advantages. First, the G-Buffers only need to be computed and stored once---which corresponds to the most expensive part of the rendering pipeline. Second, the stored G-Buffers can later be consumed in an image-based rendering front end that enables users to interactively adjust various visualization parameters---such as the applied color map or the strength of ambient occlusion---where suitable choices are often not known a priori. This paper demonstrates the use of Cinema Darkroom on several real-world datasets, highlighting CD's ability to effectively decouple the complexity and size of the dataset from its visualization

    High-Performance Computing: Dos and Don’ts

    Get PDF
    Computational fluid dynamics (CFD) is the main field of computational mechanics that has historically benefited from advances in high-performance computing. High-performance computing involves several techniques to make a simulation efficient and fast, such as distributed memory parallelism, shared memory parallelism, vectorization, memory access optimizations, etc. As an introduction, we present the anatomy of supercomputers, with special emphasis on HPC aspects relevant to CFD. Then, we develop some of the HPC concepts and numerical techniques applied to the complete CFD simulation framework: from preprocess (meshing) to postprocess (visualization) through the simulation itself (assembly and iterative solvers)

    Visuelle Analyse groĂźer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten
    • …
    corecore