466 research outputs found

    Multilevel Scalable Solvers for Stochastic Linear and Nonlinear Problems

    Full text link
    This article discusses the uncertainty quantification (UQ) for time-independent linear and nonlinear partial differential equation (PDE)-based systems with random model parameters carried out using sampling-free intrusive stochastic Galerkin method leveraging multilevel scalable solvers constructed combining two-grid Schwarz method and AMG. High-resolution spatial meshes along with a large number of stochastic expansion terms increase the system size leading to significant memory consumption and computational costs. Domain decomposition (DD)-based parallel scalable solvers are developed to this end for linear and nonlinear stochastic PDEs. A generalized minimum residual (GMRES) iterative solver equipped with a multilevel preconditioner consisting of restricted additive Schwarz (RAS) for the fine grid and algebraic multigrid (AMG) for the coarse grid is constructed to improve scalability. Numerical experiments illustrate the scalabilities of the proposed solver for stochastic linear and nonlinear Poisson problems

    End-to-end GPU acceleration of low-order-refined preconditioning for high-order finite element discretizations

    Full text link
    In this paper, we present algorithms and implementations for the end-to-end GPU acceleration of matrix-free low-order-refined preconditioning of high-order finite element problems. The methods described here allow for the construction of effective preconditioners for high-order problems with optimal memory usage and computational complexity. The preconditioners are based on the construction of a spectrally equivalent low-order discretization on a refined mesh, which is then amenable to, for example, algebraic multigrid preconditioning. The constants of equivalence are independent of mesh size and polynomial degree. For vector finite element problems in H(curl)H({\rm curl}) and H(div)H({\rm div}) (e.g. for electromagnetic or radiation diffusion problems) a specially constructed interpolation-histopolation basis is used to ensure fast convergence. Detailed performance studies are carried out to analyze the efficiency of the GPU algorithms. The kernel throughput of each of the main algorithmic components is measured, and the strong and weak parallel scalability of the methods is demonstrated. The different relative weighting and significance of the algorithmic components on GPUs and CPUs is discussed. Results on problems involving adaptively refined nonconforming meshes are shown, and the use of the preconditioners on a large-scale magnetic diffusion problem using all spaces of the finite element de Rham complex is illustrated.Comment: 23 pages, 13 figure

    Optimal-complexity and robust multigrid methods for high-order FEM

    Get PDF
    The numerical solution of elliptic PDEs is often the most computationally intensive task in large-scale continuum mechanics simulations. High-order finite element methods can efficiently exploit modern parallel hardware while offering very rapid convergence properties. As the polynomial degree is increased, the efficient solution of such PDEs becomes difficult. This thesis develops preconditioners for high-order discretizations. We build upon the pioneering work of Pavarino, who proved in 1993 that the additive Schwarz method with vertex patches and a low-order coarse space gives a solver for symmetric and coercive problems that is robust to the polynomial degree. However, for very high polynomial degrees it is not feasible to assemble or factorize the matrices for each vertex patch, as the patch matrices contain dense blocks, which couple together all degrees of freedom within a cell. The central novelty of the preconditioners we develop is that they have optimal time and space complexity on unstructured meshes of tensor-product cells. Our solver relies on new finite elements for the de Rham complex that enable the blocks in the stiffness matrix corresponding to the cell interiors to become diagonal for scalar PDEs or block diagonal for vector-valued PDEs. With these new elements, the patch problems are as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. Through the careful use of incomplete factorizations and choice of space decomposition we achieve optimal fill-in in the patch factors, ultimately allowing for optimal-complexity storage and computational cost across the setup and solution stages. We demonstrate the approach by solving a variety of symmetric and coercive problems, including the Poisson equation, the Riesz maps of H(curl) and H(div), and a H(div)-conforming interior penalty discretization of linear elasticity in three dimensions at p = 15
    • …
    corecore