65 research outputs found

    Scalable Kernel Methods via Doubly Stochastic Gradients

    Full text link
    The general perception is that kernel methods are not scalable, and neural nets are the methods of choice for nonlinear learning problems. Or have we simply not tried hard enough for kernel methods? Here we propose an approach that scales up kernel methods using a novel concept called "doubly stochastic functional gradients". Our approach relies on the fact that many kernel methods can be expressed as convex optimization problems, and we solve the problems by making two unbiased stochastic approximations to the functional gradient, one using random training points and another using random functions associated with the kernel, and then descending using this noisy functional gradient. We show that a function produced by this procedure after tt iterations converges to the optimal function in the reproducing kernel Hilbert space in rate O(1/t)O(1/t), and achieves a generalization performance of O(1/t)O(1/\sqrt{t}). This doubly stochasticity also allows us to avoid keeping the support vectors and to implement the algorithm in a small memory footprint, which is linear in number of iterations and independent of data dimension. Our approach can readily scale kernel methods up to the regimes which are dominated by neural nets. We show that our method can achieve competitive performance to neural nets in datasets such as 8 million handwritten digits from MNIST, 2.3 million energy materials from MolecularSpace, and 1 million photos from ImageNet.Comment: 32 pages, 22 figure

    Generalization Properties of Doubly Stochastic Learning Algorithms

    Full text link
    Doubly stochastic learning algorithms are scalable kernel methods that perform very well in practice. However, their generalization properties are not well understood and their analysis is challenging since the corresponding learning sequence may not be in the hypothesis space induced by the kernel. In this paper, we provide an in-depth theoretical analysis for different variants of doubly stochastic learning algorithms within the setting of nonparametric regression in a reproducing kernel Hilbert space and considering the square loss. Particularly, we derive convergence results on the generalization error for the studied algorithms either with or without an explicit penalty term. To the best of our knowledge, the derived results for the unregularized variants are the first of this kind, while the results for the regularized variants improve those in the literature. The novelties in our proof are a sample error bound that requires controlling the trace norm of a cumulative operator, and a refined analysis of bounding initial error.Comment: 24 pages. To appear in Journal of Complexit
    • …
    corecore