2,291 research outputs found

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation

    Full text link
    Many security and privacy problems can be modeled as a graph classification problem, where nodes in the graph are classified by collective classification simultaneously. State-of-the-art collective classification methods for such graph-based security and privacy analytics follow the following paradigm: assign weights to edges of the graph, iteratively propagate reputation scores of nodes among the weighted graph, and use the final reputation scores to classify nodes in the graph. The key challenge is to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. Although collective classification has been studied and applied for security and privacy problems for more than a decade, how to address this challenge is still an open question. In this work, we propose a novel collective classification framework to address this long-standing challenge. We first formulate learning edge weights as an optimization problem, which quantifies the goals about the final reputation scores that we aim to achieve. However, it is computationally hard to solve the optimization problem because the final reputation scores depend on the edge weights in a very complex way. To address the computational challenge, we propose to jointly learn the edge weights and propagate the reputation scores, which is essentially an approximate solution to the optimization problem. We compare our framework with state-of-the-art methods for graph-based security and privacy analytics using four large-scale real-world datasets from various application scenarios such as Sybil detection in social networks, fake review detection in Yelp, and attribute inference attacks. Our results demonstrate that our framework achieves higher accuracies than state-of-the-art methods with an acceptable computational overhead.Comment: Network and Distributed System Security Symposium (NDSS), 2019. Dataset link: http://gonglab.pratt.duke.edu/code-dat

    apk2vec: Semi-supervised multi-view representation learning for profiling Android applications

    Full text link
    Building behavior profiles of Android applications (apps) with holistic, rich and multi-view information (e.g., incorporating several semantic views of an app such as API sequences, system calls, etc.) would help catering downstream analytics tasks such as app categorization, recommendation and malware analysis significantly better. Towards this goal, we design a semi-supervised Representation Learning (RL) framework named apk2vec to automatically generate a compact representation (aka profile/embedding) for a given app. More specifically, apk2vec has the three following unique characteristics which make it an excellent choice for largescale app profiling: (1) it encompasses information from multiple semantic views such as API sequences, permissions, etc., (2) being a semi-supervised embedding technique, it can make use of labels associated with apps (e.g., malware family or app category labels) to build high quality app profiles, and (3) it combines RL and feature hashing which allows it to efficiently build profiles of apps that stream over time (i.e., online learning). The resulting semi-supervised multi-view hash embeddings of apps could then be used for a wide variety of downstream tasks such as the ones mentioned above. Our extensive evaluations with more than 42,000 apps demonstrate that apk2vec's app profiles could significantly outperform state-of-the-art techniques in four app analytics tasks namely, malware detection, familial clustering, app clone detection and app recommendation.Comment: International Conference on Data Mining, 201
    • …
    corecore