5,250 research outputs found

    Scalable Frames and Convex Geometry

    Full text link
    The recently introduced and characterized scalable frames can be considered as those frames which allow for perfect preconditioning in the sense that the frame vectors can be rescaled to yield a tight frame. In this paper we define mm-scalability, a refinement of scalability based on the number of non-zero weights used in the rescaling process, and study the connection between this notion and elements from convex geometry. Finally, we provide results on the topology of scalable frames. In particular, we prove that the set of scalable frames with "small" redundancy is nowhere dense in the set of frames.Comment: 14 pages, to appear in Contemporary Mat

    Measures of scalability

    Get PDF
    Scalable frames are frames with the property that the frame vectors can be rescaled resulting in tight frames. However, if a frame is not scalable, one has to aim for an approximate procedure. For this, in this paper we introduce three novel quantitative measures of the closeness to scalability for frames in finite dimensional real Euclidean spaces. Besides the natural measure of scalability given by the distance of a frame to the set of scalable frames, another measure is obtained by optimizing a quadratic functional, while the third is given by the volume of the ellipsoid of minimal volume containing the symmetrized frame. After proving that these measures are equivalent in a certain sense, we establish bounds on the probability of a randomly selected frame to be scalable. In the process, we also derive new necessary and sufficient conditions for a frame to be scalable.Comment: 27 pages, 5 figure

    On Optimal Frame Conditioners

    Full text link
    A (unit norm) frame is scalable if its vectors can be rescaled so as to result into a tight frame. Tight frames can be considered optimally conditioned because the condition number of their frame operators is unity. In this paper we reformulate the scalability problem as a convex optimization question. In particular, we present examples of various formulations of the problem along with numerical results obtained by using our methods on randomly generated frames.Comment: 11 page

    Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective

    Full text link
    This paper addresses the task of dense non-rigid structure-from-motion (NRSfM) using multiple images. State-of-the-art methods to this problem are often hurdled by scalability, expensive computations, and noisy measurements. Further, recent methods to NRSfM usually either assume a small number of sparse feature points or ignore local non-linearities of shape deformations, and thus cannot reliably model complex non-rigid deformations. To address these issues, in this paper, we propose a new approach for dense NRSfM by modeling the problem on a Grassmann manifold. Specifically, we assume the complex non-rigid deformations lie on a union of local linear subspaces both spatially and temporally. This naturally allows for a compact representation of the complex non-rigid deformation over frames. We provide experimental results on several synthetic and real benchmark datasets. The procured results clearly demonstrate that our method, apart from being scalable and more accurate than state-of-the-art methods, is also more robust to noise and generalizes to highly non-linear deformations.Comment: 10 pages, 7 figure, 4 tables. Accepted for publication in Conference on Computer Vision and Pattern Recognition (CVPR), 2018, typos fixed and acknowledgement adde
    • …
    corecore