4 research outputs found

    Comparison of Sentiment Analysis and User Ratings in Venue Recommendation

    Get PDF
    Venue recommendation aims to provide users with venues to visit, taking into account historical visits to venues. Many venue recommendation approaches make use of the provided users’ ratings to elicit the users’ preferences on the venues when making recommendations. In fact, many also consider the users’ ratings as the ground truth for assessing their recommendation performance. However, users are often reported to exhibit inconsistent rating behaviour, leading to less accurate preferences information being collected for the recommendation task. To alleviate this problem, we consider instead the use of the sentiment information collected from comments posted by the users on the venues as a surrogate to the users’ ratings. We experiment with various sentiment analysis classifiers, including the recent neural networks-based sentiment analysers, to examine the effectiveness of replacing users’ ratings with sentiment information. We integrate the sentiment information into the widely used matrix factorization and GeoSoCa multi feature-based venue recommendation models, thereby replacing the users’ ratings with the obtained sentiment scores. Our results, using three Yelp Challenge-based datasets, show that it is indeed possible to effectively replace users’ ratings with sentiment scores when state-of-the-art sentiment classifiers are used. Our findings show that the sentiment scores can provide accurate user preferences information, thereby increasing the prediction accuracy. In addition, our results suggest that a simple binary rating with ‘like’ and ‘dislike’ is a sufficient substitute of the current used multi-rating scales for venue recommendation in location-based social networks

    Multiple social network integration framework for recommendation across system domain

    Get PDF
    A recommender system is a special software that recommends items to a user based on the user’s history. A recommender system comprises users, items and a rating matrix. Rating matrix stores the interactions between users and items. The system faces a variety of problems among which three are the main concerns of this research. These problems are cold start, sparsity, and diversity. Majority of the research use a conventional framework for solving these problems. In a conventional recommender system, user profiles are generated from a single feedback source, whereas, Cross Domain Recommender Systems (CDRS) research relies on more than one source. Recently researchers have started using “Social Network Integration Framework”, that integrates social network as an additional feedback source. Although the existing framework alleviates recommendation problems better than the conventional framework, it still faces limitations. Existing framework is designed only for a single source domain and requires the same user participation in both the source and the target domain. Existing techniques are also designed to integrate knowledge from one social network only. To integrate multiple sources, this research developed a “Multiple Social Network Integration Framework”, that consists of two models and three techniques. Firstly, the Knowledge Generation Model generates interaction matrices from “n” number of source domains. Secondly, the Knowledge Linkage Model links the source domains to the target domain. The outputs of the models are inputs of the techniques. Then multiple techniques were developed to address cold start, sparsity and diversity problem using multiple source networks. Three techniques addressed the cold start problem. These techniques are Multiple Social Network integration with Equal Weights Participation (MSN-EWP), Multiple Social Network integration with Local Adjusted Weights Participation (MSNLAWP) and Multiple Social Network integration with Target Adjusted Weights Participation (MSN-TAWP). Experimental results showed that MSN-TAWP performed best by producing 47% precision improvement over popularity ranking as the baseline technique. For the sparsity problem, Multiple Social Network integration for K Nearest Neighbor identification (MSN-KNN) technique performed at least 30% better in accuracy while decreasing the error rate by 20%. Diversity problem was addressed by two combinations of the cold start and sparsity techniques. These combinations, EWP + MSN-KNN, TAWP + MSN-KNN and TAWP + MSN-KNN outperformed the rest of the diversity combinations by 56% gain in diversity with a precision loss of 1%. In conclusion, the techniques designed for multiple sources outperformed existing techniques for addressing cold start, sparsity and diversity problem. Finally, an extension of multiple social network integration framework for content-based and hybrid recommendation techniques should be considered future work

    Scalable Content-Aware Collaborative Filtering for Location Recommendation

    No full text

    A framework for leveraging properties of user reviews in recommendation

    Get PDF
    With the growing volume of information online, it is increasingly harder for users to identify useful information to support their choices when interacting with different items. Review-based recommendation systems, which leverage reviews posted by users on items to estimate the users’ preferences, have been shown to be a credible solution for addressing the problem of identifying their preferred items. However, the actual usefulness of these reviews impact the effectiveness of the resulting recommender systems, especially with the enormous volume of available reviews online. In particular, as argued by the widely cited users’ adoption of information framework, users exhibit distinct preferences for reviews depending on the properties of these reviews (e.g. length, sentiment) when making decisions. Therefore, we argue that not all reviews are equally useful for different users. We aim to effectively modelling the personalised usefulness of reviews through the use of reviews’ properties when developing review-based recommendation techniques. Note that, few studies in the literature investigated the effectiveness of leveraging the properties of reviews to develop effective review-based recommendation approaches. This thesis aims to address this research gap by proposing a review-based recommendation framework. Such a framework models the personalised usefulness of reviews according to various reviews’ properties, including the reviews’ age, length, sentiment, ratings, helpfulness as judged by the users and helpfulness as predicted by a review helpfulness classifier. In particular, the thesis addresses two main challenges: (i) the availability of the attributes of reviews and (ii) the users’ preferences estimation. The first challenge refers to the difficulty of extracting particular review properties from their corresponding attributes. For example, extraction of the age property relies on the availability of the timestamps of the corresponding reviews. We address the availability of the reviews’ attributes to extract their sentiment and helpfulness properties with classification techniques. The sentiment property of reviews is estimated through effective state-of-the-art sentiment classifiers. We first evaluate the estimated reviews’ sentiment in comparison to the users’ ratings in typical recommendation approaches. Then, we introduce a sentiment attention mechanism to encode the estimated reviews’ sentiment. Our experiments show that the sentiment property can effectively replace the users’ ratings when estimating the user preferences. Moreover, by leveraging the estimated sentiment property of reviews, our proposed review-based rating prediction model shows improved performance compared to state-of-the-art rating prediction models. Next, the extraction of the reviews’ helpfulness property leverages the reviews’ helpful votes (i.e. a type of feedback given by other reviewers providing information on whether the corresponding review is helpful to them). However, the number of helpful votes for each review are not commonly available. In particular, we propose a novel weakly supervised review helpfulness classification correction approach (i.e. the Negative Confidence-aware Weakly Supervised (NCWS) approach), which leverages the confidence in a given review being unhelpful with respect to its age. We experimentally show that NCWS-based classifiers significantly outperform existing review helpfulness classifiers on two public review datasets. Moreover, the estimated helpfulness of reviews by NCWS-based classifiers can significantly improve the performance of a review-based rating prediction model. Next, to address our second challenge pertaining to the users’ preferences estimation, we aim to estimate their preferences when using reviews exhibiting different properties to accurately predict their preferred items. In particular, we propose two novel ranking-based recommendation approaches (named RPRM and BanditProp), which models the users’ preferences using different review properties with different techniques. The RPRM model applies the attention mechanism to model the usefulness of reviews according to different review properties. Unlike RPRM, the BanditProp model leverages existing bandit algorithms and introduces a novel contextual bandit algorithm to tackle the users’ preference estimation of using specific reviews’ properties to identify useful reviews. Our experiments show that RPRM can outperform stateof-the-art review-based recommendation models, and BanditProp can significantly outperform RPRM on two publicly available review datasets. These results validate the effectiveness of leveraging the review properties when examining the usefulness of reviews to improve the performances of review-based recommendation techniques. Overall, we contribute an effective review-based recommendation framework that make accurate recommendations by leveraging the reviews’ associated properties. This framework includes models for extracting properties from reviews, and various techniques that are required to integrate the learned properties, which, in turn and according to our conducted experiments, provide good approximations of a given users’ item preferences. These contributions make progress in the development of review-based recommendation techniques and could inspire future directions of research in recommendation systems
    corecore