6,283 research outputs found

    An End-to-End Framework to Identify Pathogenic Social Media Accounts on Twitter

    Full text link
    Pathogenic Social Media (PSM) accounts such as terrorist supporter accounts and fake news writers have the capability of spreading disinformation to viral proportions. Early detection of PSM accounts is crucial as they are likely to be key users to make malicious information "viral". In this paper, we adopt the causal inference framework along with graph-based metrics in order to distinguish PSMs from normal users within a short time of their activities. We propose both supervised and semi-supervised approaches without taking the network information and content into account. Results on a real-world dataset from Twitter accentuates the advantage of our proposed frameworks. We show our approach achieves 0.28 improvement in F1 score over existing approaches with the precision of 0.90 and F1 score of 0.63.Comment: 9 pages, 8 figures, International Conference on Data Intelligence and Security. arXiv admin note: text overlap with arXiv:1905.0155

    Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning

    Full text link
    The mutual information is a core statistical quantity that has applications in all areas of machine learning, whether this is in training of density models over multiple data modalities, in maximising the efficiency of noisy transmission channels, or when learning behaviour policies for exploration by artificial agents. Most learning algorithms that involve optimisation of the mutual information rely on the Blahut-Arimoto algorithm --- an enumerative algorithm with exponential complexity that is not suitable for modern machine learning applications. This paper provides a new approach for scalable optimisation of the mutual information by merging techniques from variational inference and deep learning. We develop our approach by focusing on the problem of intrinsically-motivated learning, where the mutual information forms the definition of a well-known internal drive known as empowerment. Using a variational lower bound on the mutual information, combined with convolutional networks for handling visual input streams, we develop a stochastic optimisation algorithm that allows for scalable information maximisation and empowerment-based reasoning directly from pixels to actions.Comment: Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2015

    Implicit Causal Models for Genome-wide Association Studies

    Full text link
    Progress in probabilistic generative models has accelerated, developing richer models with neural architectures, implicit densities, and with scalable algorithms for their Bayesian inference. However, there has been limited progress in models that capture causal relationships, for example, how individual genetic factors cause major human diseases. In this work, we focus on two challenges in particular: How do we build richer causal models, which can capture highly nonlinear relationships and interactions between multiple causes? How do we adjust for latent confounders, which are variables influencing both cause and effect and which prevent learning of causal relationships? To address these challenges, we synthesize ideas from causality and modern probabilistic modeling. For the first, we describe implicit causal models, a class of causal models that leverages neural architectures with an implicit density. For the second, we describe an implicit causal model that adjusts for confounders by sharing strength across examples. In experiments, we scale Bayesian inference on up to a billion genetic measurements. We achieve state of the art accuracy for identifying causal factors: we significantly outperform existing genetics methods by an absolute difference of 15-45.3%

    Meta-learning of Sequential Strategies

    Full text link
    In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.Comment: DeepMind Technical Report (15 pages, 6 figures). Version V1.

    Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections

    Full text link
    Modeling uncertainty in deep neural networks, despite recent important advances, is still an open problem. Bayesian neural networks are a powerful solution, where the prior over network weights is a design choice, often a normal distribution or other distribution encouraging sparsity. However, this prior is agnostic to the generative process of the input data, which might lead to unwarranted generalization for out-of-distribution tested data. We suggest the presence of a confounder for the relation between the input data and the discriminative function given the target label. We propose an approach for modeling this confounder by sharing neural connectivity patterns between the generative and discriminative networks. This approach leads to a new deep architecture, where networks are sampled from the posterior of local causal structures, and coupled into a compact hierarchy. We demonstrate that sampling networks from this hierarchy, proportionally to their posterior, is efficient and enables estimating various types of uncertainties. Empirical evaluations of our method demonstrate significant improvement compared to state-of-the-art calibration and out-of-distribution detection methods

    Mimic and Classify : A meta-algorithm for Conditional Independence Testing

    Full text link
    Given independent samples generated from the joint distribution p(x,y,z)p(\mathbf{x},\mathbf{y},\mathbf{z}), we study the problem of Conditional Independence (CI-Testing), i.e., whether the joint equals the CI distribution pCI(x,y,z)=p(z)p(y∣z)p(x∣z)p^{CI}(\mathbf{x},\mathbf{y},\mathbf{z})= p(\mathbf{z}) p(\mathbf{y}|\mathbf{z})p(\mathbf{x}|\mathbf{z}) or not. We cast this problem under the purview of the proposed, provable meta-algorithm, "Mimic and Classify", which is realized in two-steps: (a) Mimic the CI distribution close enough to recover the support, and (b) Classify to distinguish the joint and the CI distribution. Thus, as long as we have a good generative model and a good classifier, we potentially have a sound CI Tester. With this modular paradigm, CI Testing becomes amiable to be handled by state-of-the-art, both generative and classification methods from the modern advances in Deep Learning, which in general can handle issues related to curse of dimensionality and operation in small sample regime. We show intensive numerical experiments on synthetic and real datasets where new mimic methods such conditional GANs, Regression with Neural Nets, outperform the current best CI Testing performance in the literature. Our theoretical results provide analysis on the estimation of null distribution as well as allow for general measures, i.e., when either some of the random variables are discrete and some are continuous or when one or more of them are discrete-continuous mixtures.Comment: 16 pages, 2 figure

    Graph2Seq: Scalable Learning Dynamics for Graphs

    Full text link
    Neural networks have been shown to be an effective tool for learning algorithms over graph-structured data. However, graph representation techniques---that convert graphs to real-valued vectors for use with neural networks---are still in their infancy. Recent works have proposed several approaches (e.g., graph convolutional networks), but these methods have difficulty scaling and generalizing to graphs with different sizes and shapes. We present Graph2Seq, a new technique that represents vertices of graphs as infinite time-series. By not limiting the representation to a fixed dimension, Graph2Seq scales naturally to graphs of arbitrary sizes and shapes. Graph2Seq is also reversible, allowing full recovery of the graph structure from the sequences. By analyzing a formal computational model for graph representation, we show that an unbounded sequence is necessary for scalability. Our experimental results with Graph2Seq show strong generalization and new state-of-the-art performance on a variety of graph combinatorial optimization problems

    Data-driven root-cause analysis for distributed system anomalies

    Full text link
    Modern distributed cyber-physical systems encounter a large variety of anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. In this regard, root-cause analysis becomes highly intractable due to complex fault propagation mechanisms in combination with diverse operating modes. This paper presents a new data-driven framework for root-cause analysis for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme for distributed cyber-physical systems built on the concept of symbolic dynamics for discovering and representing causal interactions among subsystems of a complex system. We present two approaches for root-cause analysis, namely the sequential state switching (S3S^3, based on free energy concept of a Restricted Boltzmann Machine, RBM) and artificial anomaly association (A3A^3, a multi-class classification framework using deep neural networks, DNN). Synthetic data from cases with failed pattern(s) and anomalous node are simulated to validate the proposed approaches, then compared with the performance of vector autoregressive (VAR) model-based root-cause analysis. Real dataset based on Tennessee Eastman process (TEP) is also used for validation. The results show that: (1) S3S^3 and A3A^3 approaches can obtain high accuracy in root-cause analysis and successfully handle multiple nominal operation modes, and (2) the proposed tool-chain is shown to be scalable while maintaining high accuracy.Comment: 6 pages, 3 figure

    An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery

    Full text link
    While most classical approaches to Granger causality detection repose upon linear time series assumptions, many interactions in neuroscience and economics applications are nonlinear. We develop an approach to nonlinear Granger causality detection using multilayer perceptrons where the input to the network is the past time lags of all series and the output is the future value of a single series. A sufficient condition for Granger non-causality in this setting is that all of the outgoing weights of the input data, the past lags of a series, to the first hidden layer are zero. For estimation, we utilize a group lasso penalty to shrink groups of input weights to zero. We also propose a hierarchical penalty for simultaneous Granger causality and lag estimation. We validate our approach on simulated data from both a sparse linear autoregressive model and the sparse and nonlinear Lorenz-96 model.Comment: Accepted to the NIPS Time Series Workshop 201

    Plan2Vec: Unsupervised Representation Learning by Latent Plans

    Full text link
    In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space.Comment: code available at https://geyang.github.io/plan2ve
    • …
    corecore