599 research outputs found

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Maximum Entropy Relaxation for Graphical Model Selection given Inconsistent Statistics

    Get PDF
    We develop a novel approach to approximate a specified collection of marginal distributions on subsets of variables by a globally consistent distribution on the entire collection of variables. In general, the specified marginal distributions may be inconsistent on overlapping subsets of variables. Our method is based on maximizing entropy over an exponential family of graphical models, subject to divergence constraints on small subsets of variables that enforce closeness to the specified marginals. The resulting optimization problem is convex, and can be solved efficiently using a primal-dual interiorpoint algorithm. Moreover, this framework leads naturally to a solution that is a sparse graphical model

    Self-adaptive Grid Resource Monitoring and discovery

    Get PDF
    The Grid provides a novel platform where the scientific and engineering communities can share data and computation across multiple administrative domains. There are several key services that must be offered by Grid middleware; one of them being the Grid Information Service( GIS). A GIS is a Grid middleware component which maintains information about hardware, software, services and people participating in a virtual organisation( VO). There is an inherent need in these systems for the delivery of reliable performance. This thesis describes a number of approaches which detail the development and application of a suite of benchmarks for the prediction of the process of resource discovery and monitoring on the Grid. A series of experimental studies of the characterisation of performance using benchmarking, are carried out. Several novel predictive algorithms are presented and evaluated in terms of their predictive error. Furthermore, predictive methods are developed which describe the behaviour of MDS2 for a variable number of user requests. The MDS is also extended to include job information from a local scheduler; this information is queried using requests of greatly varying complexity. The response of the MDS to these queries is then assessed in terms of several performance metrics. The benchmarking of the dynamic nature of information within MDS3 which is based on the Open Grid Services Architecture (OGSA), and also the successor to MDS2, is also carried out. The performance of both the pull and push query mechanisms is analysed. GridAdapt (Self-adaptive Grid Resource Monitoring) is a new system that is proposed, built upon the Globus MDS3 benchmarking. It offers self-adaptation, autonomy and admission control at the Index Service, whilst ensuring that the MIDS is not overloaded and can meet its quality-of-service,f or example,i n terms of its average response time for servicing synchronous queries and the total number of queries returned per unit time

    Prescriptive Analytics:A Survey of Emerging Trends And Technologies

    Get PDF

    Identification of Air Traffic Flow Segments via Incremental Deterministic Annealing Clustering

    Get PDF
    Many of the traffic management decisions and initiatives in air traffic are based on "flows" of traffic in the National Airspace System (NAS), but the actual identification of the location and time of the flow segments are often left to interpretation based on observations of traffic data points over time. Having an automated method of identifying major flow segments can help to target traffic management initiatives, evaluate design of airspace, and enable actions to be taken on the collection of flights in a flow segment rather than on the flights individually. A novel approach is developed to identify the major flow segments of air traffic in the NAS that consists of a robust method for partitioning 4-dimensional traffic trajectories into a series of great circle segments, and clustering the segments using an Agglomerate Deterministic Annealing clustering algorithm. In addition, a very efficient algorithm to incrementally cluster the segments is developed that takes into account the spatial and temporal properties of the segments, and makes the method very suitable for real-time applications. Further, an enhancement to the algorithm is provided that requires only a small subset of the segments to be clustered, drastically reducing the run time. Results of the clustering technique are shown, highlighting various major traffic flow patterns in the NAS. In addition, organizing the traffic into the flow segments identified using the Incremental Clustering method is shown to have a potential reduction in the number of conflict points. An application of the flow information is presented in the form of a Decision Support Tool (DST) that aids traffic managers in establishing and managing Airspace Flow Programs. In addition, the flow segment information is applied to a low-level form of aggregated traffic management, showing that aggregating flights into the flow segments and rerouting the whole flow segment can be efficiently performed as compared to rerouting individual aircraft separately, and can reduce the number of conflict points. Considerations for implementing these techniques in real-time systems are also discussed

    Self-adaptive Grid Resource Monitoring and discovery

    Get PDF
    The Grid provides a novel platform where the scientific and engineering communities can share data and computation across multiple administrative domains. There are several key services that must be offered by Grid middleware; one of them being the Grid Information Service( GIS). A GIS is a Grid middleware component which maintains information about hardware, software, services and people participating in a virtual organisation( VO). There is an inherent need in these systems for the delivery of reliable performance. This thesis describes a number of approaches which detail the development and application of a suite of benchmarks for the prediction of the process of resource discovery and monitoring on the Grid. A series of experimental studies of the characterisation of performance using benchmarking, are carried out. Several novel predictive algorithms are presented and evaluated in terms of their predictive error. Furthermore, predictive methods are developed which describe the behaviour of MDS2 for a variable number of user requests. The MDS is also extended to include job information from a local scheduler; this information is queried using requests of greatly varying complexity. The response of the MDS to these queries is then assessed in terms of several performance metrics. The benchmarking of the dynamic nature of information within MDS3 which is based on the Open Grid Services Architecture (OGSA), and also the successor to MDS2, is also carried out. The performance of both the pull and push query mechanisms is analysed. GridAdapt (Self-adaptive Grid Resource Monitoring) is a new system that is proposed, built upon the Globus MDS3 benchmarking. It offers self-adaptation, autonomy and admission control at the Index Service, whilst ensuring that the MIDS is not overloaded and can meet its quality-of-service,f or example,i n terms of its average response time for servicing synchronous queries and the total number of queries returned per unit time.EThOS - Electronic Theses Online ServiceUniversity of Warwick (UoW)GBUnited Kingdo
    • …
    corecore