7,018 research outputs found

    Stochastic Gradient Descent as Approximate Bayesian Inference

    Full text link
    Stochastic Gradient Descent with a constant learning rate (constant SGD) simulates a Markov chain with a stationary distribution. With this perspective, we derive several new results. (1) We show that constant SGD can be used as an approximate Bayesian posterior inference algorithm. Specifically, we show how to adjust the tuning parameters of constant SGD to best match the stationary distribution to a posterior, minimizing the Kullback-Leibler divergence between these two distributions. (2) We demonstrate that constant SGD gives rise to a new variational EM algorithm that optimizes hyperparameters in complex probabilistic models. (3) We also propose SGD with momentum for sampling and show how to adjust the damping coefficient accordingly. (4) We analyze MCMC algorithms. For Langevin Dynamics and Stochastic Gradient Fisher Scoring, we quantify the approximation errors due to finite learning rates. Finally (5), we use the stochastic process perspective to give a short proof of why Polyak averaging is optimal. Based on this idea, we propose a scalable approximate MCMC algorithm, the Averaged Stochastic Gradient Sampler.Comment: 35 pages, published version (JMLR 2017

    A Variational Analysis of Stochastic Gradient Algorithms

    Full text link
    Stochastic Gradient Descent (SGD) is an important algorithm in machine learning. With constant learning rates, it is a stochastic process that, after an initial phase of convergence, generates samples from a stationary distribution. We show that SGD with constant rates can be effectively used as an approximate posterior inference algorithm for probabilistic modeling. Specifically, we show how to adjust the tuning parameters of SGD such as to match the resulting stationary distribution to the posterior. This analysis rests on interpreting SGD as a continuous-time stochastic process and then minimizing the Kullback-Leibler divergence between its stationary distribution and the target posterior. (This is in the spirit of variational inference.) In more detail, we model SGD as a multivariate Ornstein-Uhlenbeck process and then use properties of this process to derive the optimal parameters. This theoretical framework also connects SGD to modern scalable inference algorithms; we analyze the recently proposed stochastic gradient Fisher scoring under this perspective. We demonstrate that SGD with properly chosen constant rates gives a new way to optimize hyperparameters in probabilistic models.Comment: 8 pages, 3 figure

    Privacy-Preserving Deep Learning via Weight Transmission

    Full text link
    This paper considers the scenario that multiple data owners wish to apply a machine learning method over the combined dataset of all owners to obtain the best possible learning output but do not want to share the local datasets owing to privacy concerns. We design systems for the scenario that the stochastic gradient descent (SGD) algorithm is used as the machine learning method because SGD (or its variants) is at the heart of recent deep learning techniques over neural networks. Our systems differ from existing systems in the following features: {\bf (1)} any activation function can be used, meaning that no privacy-preserving-friendly approximation is required; {\bf (2)} gradients computed by SGD are not shared but the weight parameters are shared instead; and {\bf (3)} robustness against colluding parties even in the extreme case that only one honest party exists. We prove that our systems, while privacy-preserving, achieve the same learning accuracy as SGD and hence retain the merit of deep learning with respect to accuracy. Finally, we conduct several experiments using benchmark datasets, and show that our systems outperform previous system in terms of learning accuracies.Comment: Full version of a conference paper at NSS 201

    Solving differential equations with unknown constitutive relations as recurrent neural networks

    Full text link
    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and we use recurrent neural network to "learn" the reaction rate from this data. This is achieved by including a discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow's recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differences in design and function require modifications to the conventional wisdom about training such networks.Comment: 19 pages, 8 figure

    Stochastic Backpropagation and Approximate Inference in Deep Generative Models

    Full text link
    We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.Comment: Appears In Proceedings of the 31st International Conference on Machine Learning (ICML), JMLR: W\&CP volume 32, 201

    Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit

    Full text link
    In deep latent Gaussian models, the latent variable is generated by a time-inhomogeneous Markov chain, where at each time step we pass the current state through a parametric nonlinear map, such as a feedforward neural net, and add a small independent Gaussian perturbation. This work considers the diffusion limit of such models, where the number of layers tends to infinity, while the step size and the noise variance tend to zero. The limiting latent object is an It\^o diffusion process that solves a stochastic differential equation (SDE) whose drift and diffusion coefficient are implemented by neural nets. We develop a variational inference framework for these \textit{neural SDEs} via stochastic automatic differentiation in Wiener space, where the variational approximations to the posterior are obtained by Girsanov (mean-shift) transformation of the standard Wiener process and the computation of gradients is based on the theory of stochastic flows. This permits the use of black-box SDE solvers and automatic differentiation for end-to-end inference. Experimental results with synthetic data are provided

    A Piecewise Deterministic Markov Process via (r,θ)(r,\theta) swaps in hyperspherical coordinates

    Full text link
    Recently, a class of stochastic processes known as piecewise deterministic Markov processes has been used to define continuous-time Markov chain Monte Carlo algorithms with a number of attractive properties, including compatibility with stochastic gradients like those typically found in optimization and variational inference, and high efficiency on certain big data problems. Not many processes in this class that are capable of targeting arbitrary invariant distributions are currently known, and within one subclass all previously known processes utilize linear transition functions. In this work, we derive a process whose transition function is nonlinear through solving its Fokker-Planck equation in hyperspherical coordinates. We explore its behavior on Gaussian targets, as well as a Bayesian logistic regression model with synthetic data. We discuss implications to both the theory of piecewise deterministic Markov processes, and to Bayesian statisticians as well as physicists seeking to use them for simulation-based computation

    Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations

    Full text link
    Classical numerical methods for solving partial differential equations suffer from the curse dimensionality mainly due to their reliance on meticulously generated spatio-temporal grids. Inspired by modern deep learning based techniques for solving forward and inverse problems associated with partial differential equations, we circumvent the tyranny of numerical discretization by devising an algorithm that is scalable to high-dimensions. In particular, we approximate the unknown solution by a deep neural network which essentially enables us to benefit from the merits of automatic differentiation. To train the aforementioned neural network we leverage the well-known connection between high-dimensional partial differential equations and forward-backward stochastic differential equations. In fact, independent realizations of a standard Brownian motion will act as training data. We test the effectiveness of our approach for a couple of benchmark problems spanning a number of scientific domains including Black-Scholes-Barenblatt and Hamilton-Jacobi-Bellman equations, both in 100-dimensions

    GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration

    Full text link
    Despite advances in scalable models, the inference tools used for Gaussian processes (GPs) have yet to fully capitalize on developments in computing hardware. We present an efficient and general approach to GP inference based on Blackbox Matrix-Matrix multiplication (BBMM). BBMM inference uses a modified batched version of the conjugate gradients algorithm to derive all terms for training and inference in a single call. BBMM reduces the asymptotic complexity of exact GP inference from O(n3)O(n^3) to O(n2)O(n^2). Adapting this algorithm to scalable approximations and complex GP models simply requires a routine for efficient matrix-matrix multiplication with the kernel and its derivative. In addition, BBMM uses a specialized preconditioner to substantially speed up convergence. In experiments we show that BBMM effectively uses GPU hardware to dramatically accelerate both exact GP inference and scalable approximations. Additionally, we provide GPyTorch, a software platform for scalable GP inference via BBMM, built on PyTorch.Comment: NeurIPS 201

    Advances in Variational Inference

    Full text link
    Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been successfully used in various models and large-scale applications. In this review, we give an overview of recent trends in variational inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects: (a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with inference networks. Finally, we provide a summary of promising future research directions
    • …
    corecore