3,124,858 research outputs found
Multi-Dimensional Spatially-Coupled Codes
Spatially-coupled (SC) codes are constructed by coupling many regular
low-density parity-check codes in a chain. The decoding chain of SC codes stops
when facing burst erasures. This problem can not be overcome by increasing
coupling number. In this paper, we introduce multi-dimensional (MD) SC codes.
Numerical results show that 2D-SC codes are more robust to the burst erasures
than 1D-SC codes. Furthermore, we consider designing MD-SC codes with smaller
rateloss
A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network
Network Function Virtualization (NFV) aims to simplify deployment of network
services by running Virtual Network Functions (VNFs) on commercial
off-the-shelf servers. Service deployment involves placement of VNFs and
in-sequence routing of traffic flows through VNFs comprising a Service Chain
(SC). The joint VNF placement and traffic routing is called SC mapping. In a
Wide-Area Network (WAN), a situation may arise where several traffic flows,
generated by many distributed node pairs, require the same SC; then, a single
instance (or occurrence) of that SC might not be enough. SC mapping with
multiple SC instances for the same SC turns out to be a very complex problem,
since the sequential traversal of VNFs has to be maintained while accounting
for traffic flows in various directions. Our study is the first to deal with
the problem of SC mapping with multiple SC instances to minimize network
resource consumption. We first propose an Integer Linear Program (ILP) to solve
this problem. Since ILP does not scale to large networks, we develop a
column-generation-based ILP (CG-ILP) model. However, we find that exact
mathematical modeling of the problem results in quadratic constraints in our
CG-ILP. The quadratic constraints are made linear but even the scalability of
CG-ILP is limited. Hence, we also propose a two-phase column-generation-based
approach to get results over large network topologies within reasonable
computational times. Using such an approach, we observe that an appropriate
choice of only a small set of SC instances can lead to a solution very close to
the minimum bandwidth consumption. Further, this approach also helps us to
analyze the effects of number of VNF replicas and number of NFV nodes on
bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671
Level Crossing Rate of Macrodiversity System in the Presence of Multipath Fading and Shadowing
Macrodiversity system including macrodiversity SC receiver and two microdiversity SC receivers is considered in this paper. Received signal experiences, simultaneously, both, long term fading and short term fading. Microdiversity SC receivers reduces Rayleigh fading effects on system performance and macrodiversity SC receiver mitigate Gamma shadowing effects on system performance. Closed form expressions for level crossing rate of microdiversity SC receivers output signals envelopes are calculated. This expression is used for evaluation of level crossing rate of macrodiversity SC receiver output signal envelope. Numerical expressions are illustrated to show the influence of Gamma shadowing severity on level crossing rate
- …
