528 research outputs found

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    Reasoning About Strategies: On the Model-Checking Problem

    Full text link
    In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL\star, and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic, which we denote here by CHP-SL, with the aim of getting a powerful framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications over strategies and has been investigated in the very specific setting of two-agents turned-based games, where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems. In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about strategies in multi-agent concurrent games. We prove that SL includes CHP-SL, while maintaining a decidable model-checking problem. In particular, the algorithm we propose is computationally not harder than the best one known for CHP-SL. Moreover, we prove that such a problem for SL is NonElementarySpace-hard. This negative result has spurred us to investigate here syntactic fragments of SL, strictly subsuming ATL\star, with the hope of obtaining an elementary model-checking problem. Among the others, we study the sublogics SL[NG], SL[BG], and SL[1G]. They encompass formulas in a special prenex normal form having, respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these logics, we prove that the model-checking problem for SL[1G] is 2ExpTime-complete, thus not harder than the one for ATL\star

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Model checking Branching-Time Properties of Multi-Pushdown Systems is Hard

    Full text link
    We address the model checking problem for shared memory concurrent programs modeled as multi-pushdown systems. We consider here boolean programs with a finite number of threads and recursive procedures. It is well-known that the model checking problem is undecidable for this class of programs. In this paper, we investigate the decidability and the complexity of this problem under the assumption of bounded context-switching defined by Qadeer and Rehof, and of phase-boundedness proposed by La Torre et al. On the model checking of such systems against temporal logics and in particular branching time logics such as the modal μ\mu-calculus or CTL has received little attention. It is known that parity games, which are closely related to the modal μ\mu-calculus, are decidable for the class of bounded-phase systems (and hence for bounded-context switching as well), but with non-elementary complexity (Seth). A natural question is whether this high complexity is inevitable and what are the ways to get around it. This paper addresses these questions and unfortunately, and somewhat surprisingly, it shows that branching model checking for MPDSs is inherently an hard problem with no easy solution. We show that parity games on MPDS under phase-bounding restriction is non-elementary. Our main result shows that model checking a kk context bounded MPDS against a simple fragment of CTL, consisting of formulas that whose temporal operators come from the set {\EF, \EX}, has a non-elementary lower bound
    corecore