212,368 research outputs found
A simple morphodynamic model for sand banks and large-scale sand pits subject to asymetrical tides
We extend existing knowledge on theoretical growth characteristics of tidal sand banks by including asymmetrical tides with an M0, M2 and M4-constituent, thus allowing for migration. Furthermore, in the context of the continuously increasing demand on the Dutch sand market, we show that creating a large-scale offshore sand pit has long-term morphological implications, both for the pit itself and the surrounding area. The pit deepens, while around it a sand bank pattern emerges, spreading at a constant rate of the order of tens to hundred metres per year
Minimal model for aeolian sand dunes
We present a minimal model for the formation and migration of aeolian sand
dunes. It combines a perturbative description of the turbulent wind velocity
field above the dune with a continuum saltation model that allows for
saturation transients in the sand flux. The latter are shown to provide the
characteristic length scale. The model can explain the origin of important
features of dunes, such as the formation of a slip face, the broken scale
invariance, and the existence of a minimum dune size. It also predicts the
longitudinal shape and aspect ratio of dunes and heaps, their migration
velocity and shape relaxation dynamics. Although the minimal model employs
non-local expressions for the wind shear stress as well as for the sand flux,
it is simple enough to serve as a very efficient tool for analytical and
numerical investigations and to open up the way to simulations of large scale
desert topographies.Comment: 19 pages, 22 figure
Earth-like sand fluxes on Mars
Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving—implying large sand fluxes—or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar
The role of Internal Solitary Waves on deep-water sedimentary processes. The case of up-slope migrating sediment waves off the Messina Strait
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal
environments, and continental slopes exposed to strong currents, where they are formed by current
shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily
observed in marine environments where no such current exists; the physical processes driving their
formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced
by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves.
We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that
ISWs formed at the interface between intermediate and surface waters are refracted by topography.
Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave
field is due to refraction of such ISWs. Combining field observations and numerical modelling, we
show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing
bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom
topography matches the observed deflection of the sand waves; and predicted migration rates of sand
waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure
of continental margins and it represents a promising link between the geological and oceanographic
communities
Dune formation on the present Mars
We apply a model for sand dunes to calculate formation of dunes on Mars under
the present Martian atmospheric conditions. We find that different dune shapes
as those imaged by Mars Global Surveyor could have been formed by the action of
sand-moving winds occuring on today's Mars. Our calculations show, however,
that Martian dunes could be only formed due to the higher efficiency of Martian
winds in carrying grains into saltation. The model equations are solved to
study saltation transport under different atmospheric conditions valid for
Mars. We obtain an estimate for the wind speed and migration velocity of
barchan dunes at different places on Mars. From comparison with the shape of
bimodal sand dunes, we find an estimate for the timescale of the changes in
Martian wind regimes.Comment: 16 pages, 12 figure
Spatial and seasonal abundance of sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus) off the coast of Texas, determined with twenty years of data (1987–200
Sand seatrout (Cynoscion arenarius) and silver seatrout (C.
nothus) are both found within the immediate offshore areas of the Gulf of Mexico, especially around Texas; however information is limited on how much distributional overlap really occurs between these species. In order to investigate spatial and seasonal differences between species, we analyzed twenty years of bay and offshore trawl data collected by biologists of the Coastal Fisheries Division, Texas Parks and Wildlife Department. Sand seatrout and silver seatrout were distributed differently among offshore sampling areas, and salinity and water depth appeared to correlate with their distribution. Additionally,
within the northernmost sampling area of the gulf waters, water depth correlated significantly with the presence of silver seatrout, which were found at deeper depths than sand
seatrout. There was also an overall significant decrease in silver seatrout abundance during the summer season, when temperatures were at their highest, and this decrease may
have indicated a migration farther offshore. Sand seatrout abundance had an inverse relationship with salinity and water depth offshore. In addition, sand seatrout abundance was highest in bays with direct passes to the gulf and correlated with corresponding abundance in offshore areas. These data highlight the seasonal and spatial differences in abundance between sand and silver seatrout and relate
these differences to the hydrological and geological features found along the Texas coastline
3D Dune Skeleton Model as a Coupled Dynamical System of 2D Cross-Sections
To analyze theoretically the stability of the shape and the migration process
of transverse dunes and barchans, we propose a {\it skeleton model} of 3D dunes
described with coupled dynamics of 2D cross-sections. First, 2D cross-sections
of a 3D dune parallel to the wind direction are extracted as elements of a
skeleton of the 3D dune, hence, the dynamics of each and interaction between
them is considered. This model simply describes the essential dynamics of 3D
dunes as a system of coupled ordinary differential equations. Using the model
we study the stability of the shape of 3D transversal dunes and their
deformation to barchans depending on the amount of available sand in the dune
field, sand flow in parallel and perpendicular to wind direction.Comment: 6 pages, 6 figures, lette
Dune migration and sand transport rates in tidal estuaries: The example of the river elbe
Large parts of the tidal estuary of river Elbe (Germany) are characterized by regular patterns of sand dunes. They are presumed to evolve due to complex sand transport mechanisms and show multi-faceted migration patterns. Direction and magnitude of their migration are influenced by hydrodynamic boundary conditions such as river runoff and tides. Dune Migration can lead to residual sand transport rates, depending on its direction and magnitude and the dune's characteristics. The understanding of dune migration patterns and associated sand transport is the basis of an effective sediment management as well as an important requirement for planning offshore structures. This study focuses on methods for computing migration and sand transport rates in automated ways. In a comparison and validation of different approaches, a cross-correlation technique was found to produce best results. From a unique data set of up to six annual bathymetrical multi-beam soundings between 1995 and 2010, dune characteristics and migration rates were processed and analysed autonomously. The findings show that over the long run, average dune migration and sand transport rates in the present study reach are directed upstream
Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions
Many coastal and estuarine environments are dominated by mixtures of non-cohesive sand and cohesive mud. The migration rate of bedforms, such as ripples and dunes, in these environments is important in determining bed material transport rates to inform and assess numerical models of sediment transport and geomorphology. However, these models tend to ignore parameters describing the physical and biological cohesion (resulting from clay and extracellular polymeric substances, EPS) in natural mixed sediment, largely because of a scarcity of relevant laboratory and field data. To address this gap in knowledge, data were collected on intertidal flats over a spring-neap cycle to determine the bed material transport rates of bedforms in biologically-active mixed sand-mud. Bed cohesive composition changed from below 2 vol% up to 5.4 vol% cohesive clay, as the tide progressed from spring towards neap. The amount of EPS in the bed sediment was found to vary linearly with the clay content. Using multiple linear regression, the transport rate was found to depend on the Shields stress parameter and the bed cohesive clay content. The transport rates decreased with increasing cohesive clay and EPS content, when these contents were below 2.8 vol% and 0.05 wt%, respectively. Above these limits, bedform migration and bed material transport was not detectable by the instruments in the study area. These limits are consistent with recently conducted sand-clay and sand-EPS laboratory experiments on bedform development. This work has important implications for the circumstances under which existing sand-only bedform migration transport formulae may be applied in a mixed sand-clay environment, particularly as 2.8 vol% cohesive clay is well within the commonly adopted definition of “clean sand”
- …
