8 research outputs found

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure

    Sampling-based incremental information gathering with applications to robotic exploration and environmental monitoring

    Full text link
    © The Author(s) 2019. We propose a sampling-based motion-planning algorithm equipped with an information-theoretic convergence criterion for incremental informative motion planning. The proposed approach allows dense map representations and incorporates the full state uncertainty into the planning process. The problem is formulated as a constrained maximization problem. Our approach is built on rapidly exploring information-gathering algorithms and benefits from the advantages of sampling-based optimal motion-planning algorithms. We propose two information functions and their variants for fast and online computations. We prove an information-theoretic convergence for an entire exploration and information-gathering mission based on the least upper bound of the average map entropy. A natural automatic stopping criterion for information-driven motion control results from the convergence analysis. We demonstrate the performance of the proposed algorithms using three scenarios: comparison of the proposed information functions and sensor configuration selection, robotic exploration in unknown environments, and a wireless signal strength monitoring task in a lake from a publicly available dataset collected using an autonomous surface vehicle
    corecore