23 research outputs found

    DASC: a Decomposition Algorithm for multistage stochastic programs with Strongly Convex cost functions

    Full text link
    We introduce DASC, a decomposition method akin to Stochastic Dual Dynamic Programming (SDDP) which solves some multistage stochastic optimization problems having strongly convex cost functions. Similarly to SDDP, DASC approximates cost-to-go functions by a maximum of lower bounding functions called cuts. However, contrary to SDDP, the cuts computed with DASC are quadratic functions. We also prove the convergence of DASC.Comment: arXiv admin note: text overlap with arXiv:1707.0081

    Dual Dynamic Programming with cut selection: convergence proof and numerical experiments

    Full text link
    We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP combined with the Territory algorithm, Level 1 or its variant for nonlinear optimization problems. In the special case of linear programs, we show convergence in a finite number of iterations. Numerical simulations illustrate the interest of our variant and show that it can be much quicker than a simplex algorithm on some large instances of portfolio selection and inventory problems

    Foundations of Multistage Stochastic Programming

    Full text link
    Multistage stochastic optimization problems are oftentimes formulated informally in a pathwise way. These are correct in a discrete setting and suitable when addressing computational challenges, for example. But the pathwise problem statement does not allow an analysis with mathematical rigor and is therefore not appropriate. This paper addresses the foundations. We provide a novel formulation of multistage stochastic optimization problems by involving adequate stochastic processes as control. The fundamental contribution is a proof that there exist measurable versions of intermediate value functions. Our proof builds on the Kolmogorov continuity theorem. A verification theorem is given in addition, and it is demonstrated that all traditional problem specifications can be stated in the novel setting with mathematical rigor. Further, we provide dynamic equations for the general problem, which is developed for various problem classes. The problem classes covered here include Markov decision processes, reinforcement learning and stochastic dual dynamic programming

    Multicut decomposition methods with cut selection for multistage stochastic programs

    Full text link
    We introduce a variant of Multicut Decomposition Algorithms (MuDA), called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates strategies to select the most relevant cuts of the approximate recourse functions. We prove the convergence of the method in a finite number of iterations and use it to solve six portfolio problems with direct transaction costs under return uncertainty and six inventory management problems under demand uncertainty. On all problem instances CuSMuDA is much quicker than MuDA: between 5.1 and 12.6 times quicker for the porfolio problems considered and between 6.4 and 15.7 times quicker for the inventory problems

    A Composite Risk Measure Framework for Decision Making under Uncertainty

    Full text link
    In this paper, we present a unified framework for decision making under uncertainty. Our framework is based on the composite of two risk measures, where the inner risk measure accounts for the risk of decision given the exact distribution of uncertain model parameters, and the outer risk measure quantifies the risk that occurs when estimating the parameters of distribution. We show that the model is tractable under mild conditions. The framework is a generalization of several existing models, including stochastic programming, robust optimization, distributionally robust optimization, etc. Using this framework, we study a few new models which imply probabilistic guarantees for solutions and yield less conservative results comparing to traditional models. Numerical experiments are performed on portfolio selection problems to demonstrate the strength of our models

    Risk Neutral Reformulation Approach to Risk Averse Stochastic Programming

    Full text link
    The aim of this paper is to show that in some cases risk averse multistage stochastic programming problems can be reformulated in a form of risk neutral setting. This is achieved by a change of the reference probability measure making ``bad" (extreme) scenarios more frequent. As a numerical example we demonstrate advantages of such change-of-measure approach applied to the Brazilian Interconnected Power System operation planning problem

    Inexact cuts in Deterministic and Stochastic Dual Dynamic Programming applied to linear optimization problems

    Full text link
    We introduce an extension of Dual Dynamic Programming (DDP) to solve linear dynamic programming equations. We call this extension IDDP-LP which applies to situations where some or all primal and dual subproblems to be solved along the iterations of the method are solved with a bounded error (inexactly). We provide convergence theorems both in the case when errors are bounded and for asymptotically vanishing errors. We extend the analysis to stochastic linear dynamic programming equations, introducing Inexact Stochastic Dual Dynamic Programming for linear programs (ISDDP-LP), an inexact variant of SDDP applied to linear programs corresponding to the situation where some or all problems to be solved in the forward and backward passes of SDDP are solved approximately. We also provide convergence theorems for ISDDP-LP for bounded and asymptotically vanishing errors. Finally, we present the results of numerical experiments comparing SDDP and ISSDP-LP on a portfolio problem with direct transation costs modelled as a multistage stochastic linear optimization problem. On these experiments, ISDDP-LP allows us to obtain a good policy faster than SDDP

    Convergence analysis of sampling-based decomposition methods for risk-averse multistage stochastic convex programs

    Full text link
    We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent

    A Moment and Sum-of-Squares Extension of Dual Dynamic Programming with Application to Nonlinear Energy Storage Problems

    Full text link
    We present a finite-horizon optimization algorithm that extends the established concept of Dual Dynamic Programming (DDP) in two ways. First, in contrast to the linear costs, dynamics, and constraints of standard DDP, we consider problems in which all of these can be polynomial functions. Second, we allow the state trajectory to be described by probability distributions rather than point values, and return approximate value functions fitted to these. The algorithm is in part an adaptation of sum-of-squares techniques used in the approximate dynamic programming literature. It alternates between a forward simulation through the horizon, in which the moments of the state distribution are propagated through a succession of single-stage problems, and a backward recursion, in which a new polynomial function is derived for each stage using the moments of the state as fixed data. The value function approximation returned for a given stage is the point-wise maximum of all polynomials derived for that stage. This contrasts with the piecewise affine functions derived in conventional DDP. We prove key convergence properties of the new algorithm, and validate it in simulation on two case studies related to the optimal operation of energy storage devices with nonlinear characteristics. The first is a small borehole storage problem, for which multiple value function approximations can be compared. The second is a larger problem, for which conventional discretized dynamic programming is intractable.Comment: 33 pages, 9 figure

    Single cut and multicut SDDP with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments

    Full text link
    We introduce a variant of Multicut Decomposition Algorithms (MuDA), called CuSMuDA (Cut Selection for Multicut Decomposition Algorithms), for solving multistage stochastic linear programs that incorporates a class of cut selection strategies to choose the most relevant cuts of the approximate recourse functions. This class contains Level 1 and Limited Memory Level 1 cut selection strategies, initially introduced for respectively Stochastic Dual Dynamic Programming (SDDP) and Dual Dynamic Programming (DDP). We prove the almost sure convergence of the method in a finite number of iterations and obtain as a by-product the almost sure convergence in a finite number of iterations of SDDP combined with our class of cut selection strategies. We compare the performance of MuDA, SDDP, and their variants with cut selection (using Level 1 and Limited Memory Level 1) on several instances of a portfolio problem and of an inventory problem. On these experiments, in general, SDDP is quicker (i.e., satisfies the stopping criterion quicker) than MuDA and cut selection allows us to decrease the computational bulk with Limited Memory Level 1 being more efficient (sometimes much more) than Level 1.Comment: arXiv admin note: substantial text overlap with arXiv:1705.0897
    corecore