15,164 research outputs found

    Estimating and Sampling Graphs with Multidimensional Random Walks

    Full text link
    Estimating characteristics of large graphs via sampling is a vital part of the study of complex networks. Current sampling methods such as (independent) random vertex and random walks are useful but have drawbacks. Random vertex sampling may require too many resources (time, bandwidth, or money). Random walks, which normally require fewer resources per sample, can suffer from large estimation errors in the presence of disconnected or loosely connected graphs. In this work we propose a new mm-dimensional random walk that uses mm dependent random walkers. We show that the proposed sampling method, which we call Frontier sampling, exhibits all of the nice sampling properties of a regular random walk. At the same time, our simulations over large real world graphs show that, in the presence of disconnected or loosely connected components, Frontier sampling exhibits lower estimation errors than regular random walks. We also show that Frontier sampling is more suitable than random vertex sampling to sample the tail of the degree distribution of the graph

    Learning Edge Representations via Low-Rank Asymmetric Projections

    Full text link
    We propose a new method for embedding graphs while preserving directed edge information. Learning such continuous-space vector representations (or embeddings) of nodes in a graph is an important first step for using network information (from social networks, user-item graphs, knowledge bases, etc.) in many machine learning tasks. Unlike previous work, we (1) explicitly model an edge as a function of node embeddings, and we (2) propose a novel objective, the "graph likelihood", which contrasts information from sampled random walks with non-existent edges. Individually, both of these contributions improve the learned representations, especially when there are memory constraints on the total size of the embeddings. When combined, our contributions enable us to significantly improve the state-of-the-art by learning more concise representations that better preserve the graph structure. We evaluate our method on a variety of link-prediction task including social networks, collaboration networks, and protein interactions, showing that our proposed method learn representations with error reductions of up to 76% and 55%, on directed and undirected graphs. In addition, we show that the representations learned by our method are quite space efficient, producing embeddings which have higher structure-preserving accuracy but are 10 times smaller
    • …
    corecore