14 research outputs found

    Towards Efficient Data Valuation Based on the Shapley Value

    Full text link
    "How much is my data worth?" is an increasingly common question posed by organizations and individuals alike. An answer to this question could allow, for instance, fairly distributing profits among multiple data contributors and determining prospective compensation when data breaches happen. In this paper, we study the problem of data valuation by utilizing the Shapley value, a popular notion of value which originated in coopoerative game theory. The Shapley value defines a unique payoff scheme that satisfies many desiderata for the notion of data value. However, the Shapley value often requires exponential time to compute. To meet this challenge, we propose a repertoire of efficient algorithms for approximating the Shapley value. We also demonstrate the value of each training instance for various benchmark datasets

    High-Dimensional Geometric Streaming in Polynomial Space

    Full text link
    Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once dlognd\geq\log n, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of nn points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to poly(d,logn)\mathrm{poly}(d,\log n) bits of space by trading off with a poly(d,logn)\mathrm{poly}(d,\log n) factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for \ell_\infty subspace embeddings with poly(d,logn)\mathrm{poly}(d,\log n) space and poly(d,logn)\mathrm{poly}(d,\log n) distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a logn\log n dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For p\ell_p subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using O(d2logn)O(d^2\log n) space and O((dlogn)1/21/p)O((d\log n)^{1/2-1/p}) distortion for p>2p>2, whereas previous deterministic algorithms incurred a poly(n)\mathrm{poly}(n) factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.Comment: Abstract shortened to meet arXiv limits; v2 fix statements concerning online condition numbe

    Streaming Low-Rank Matrix Approximation with an Application to Scientific Simulation

    Get PDF
    This paper argues that randomized linear sketching is a natural tool for on-the-fly compression of data matrices that arise from large-scale scientific simulations and data collection. The technical contribution consists in a new algorithm for constructing an accurate low-rank approximation of a matrix from streaming data. This method is accompanied by an a priori analysis that allows the user to set algorithm parameters with confidence and an a posteriori error estimator that allows the user to validate the quality of the reconstructed matrix. In comparison to previous techniques, the new method achieves smaller relative approximation errors and is less sensitive to parameter choices. As concrete applications, the paper outlines how the algorithm can be used to compress a Navier--Stokes simulation and a sea surface temperature dataset
    corecore