1,773 research outputs found

    Three-phase point in a binary hard-core lattice model?

    Full text link
    Using Monte Carlo simulation, Van Duijneveldt and Lekkerkerker [Phys. Rev. Lett. 71, 4264 (1993)] found gas-liquid-solid behaviour in a simple two-dimensional lattice model with two types of hard particles. The same model is studied here by means of numerical transfer matrix calculations, focusing on the finite size scaling of the gaps between the largest few eigenvalues. No evidence for a gas-liquid transition is found. We discuss the relation of the model with a solvable RSOS model of which the states obey the same exclusion rules. Finally, a detailed analysis of the relation with the dilute three-state Potts model strongly supports the tricritical point rather than a three-phase point.Comment: 17 pages, LaTeX2e, 13 EPS figure

    Causal Fourier Analysis on Directed Acyclic Graphs and Posets

    Full text link
    We present a novel form of Fourier analysis, and associated signal processing concepts, for signals (or data) indexed by edge-weighted directed acyclic graphs (DAGs). This means that our Fourier basis yields an eigendecomposition of a suitable notion of shift and convolution operators that we define. DAGs are the common model to capture causal relationships between data values and in this case our proposed Fourier analysis relates data with its causes under a linearity assumption that we define. The definition of the Fourier transform requires the transitive closure of the weighted DAG for which several forms are possible depending on the interpretation of the edge weights. Examples include level of influence, distance, or pollution distribution. Our framework is different from prior GSP: it is specific to DAGs and leverages, and extends, the classical theory of Moebius inversion from combinatorics. For a prototypical application we consider DAGs modeling dynamic networks in which edges change over time. Specifically, we model the spread of an infection on such a DAG obtained from real-world contact tracing data and learn the infection signal from samples assuming sparsity in the Fourier domain.Comment: 13 pages, 11 figure

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Lie Group Algebra Convolutional Filters

    Full text link
    In this paper we propose a framework to leverage Lie group symmetries on arbitrary spaces exploiting \textit{algebraic signal processing} (ASP). We show that traditional group convolutions are one particular instantiation of a more general Lie group algebra homomorphism associated to an algebraic signal model rooted in the Lie group algebra L1(G)L^{1}(G) for given Lie group GG. Exploiting this fact, we decouple the discretization of the Lie group convolution elucidating two separate sampling instances: the filter and the signal. To discretize the filters, we exploit the exponential map that links a Lie group with its associated Lie algebra. We show that the discrete Lie group filter learned from the data determines a unique filter in L1(G)L^{1}(G), and we show how this uniqueness of representation is defined by the bandwidth of the filter given a spectral representation. We also derive error bounds for the approximations of the filters in L1(G)L^{1}(G) with respect to its learned discrete representations. The proposed framework allows the processing of signals on spaces of arbitrary dimension and where the actions of some elements of the group are not necessarily well defined. Finally, we show that multigraph convolutional signal models come as the natural discrete realization of Lie group signal processing models, and we use this connection to establish stability results for Lie group algebra filters. To evaluate numerically our results, we build neural networks with these filters and we apply them in multiple datasets, including a knot classification problem

    Learning in Networks: a survey

    Get PDF
    This paper presents a survey of research on learning with a special focus on the structure of interaction between individual entities. The structure is formally modelled as a network: the nodes of the network are individuals while the arcs admit a variety of interpretations (ranging from information channels to social and economic ties). I first examine the nature of learning about optimal actions for a given network architecture. I then discuss learning about optimal links and actions in evolving networks.

    How can innovation economics benefit from complex network analysis?

    Get PDF
    There is a deficit in economics of theories and empirical data on complex networks, though mathematicians, physicists, biologists, computer scientists, and sociologists are actively engaged in their study. This paper offers a focused review of prominent concepts in contemporary thinking in network research that may motivate further theoretical research and stimulate interest of economists. Possible avenues for modelling innovation, considered the driving force behind economic change, have been explored. A transition is needed from the analysis in economics of the transaction to the explicit examination of market structure and how it processes, or is processed by, innovation.Network; statistics; economy; innovation; modelling
    corecore