3 research outputs found

    Sampler Design for Bayesian Personalized Ranking by Leveraging View Data

    Full text link
    Bayesian Personalized Ranking (BPR) is a representative pairwise learning method for optimizing recommendation models. It is widely known that the performance of BPR depends largely on the quality of negative sampler. In this paper, we make two contributions with respect to BPR. First, we find that sampling negative items from the whole space is unnecessary and may even degrade the performance. Second, focusing on the purchase feedback of E-commerce, we propose an effective sampler for BPR by leveraging the additional view data. In our proposed sampler, users' viewed interactions are considered as an intermediate feedback between those purchased and unobserved interactions. The pairwise rankings of user preference among these three types of interactions are jointly learned, and a user-oriented weighting strategy is considered during learning process, which is more effective and flexible. Compared to the vanilla BPR that applies a uniform sampler on all candidates, our view-enhanced sampler enhances BPR with a relative improvement over 37.03% and 16.40% on two real-world datasets. Our study demonstrates the importance of considering users' additional feedback when modeling their preference on different items, which avoids sampling negative items indiscriminately and inefficiently.Comment: submitted to IEEE Transactions on Knowledge and Data Engineerin

    Addressing Class-Imbalance Problem in Personalized Ranking

    Full text link
    Pairwise ranking models have been widely used to address recommendation problems. The basic idea is to learn the rank of users' preferred items through separating items into \emph{positive} samples if user-item interactions exist, and \emph{negative} samples otherwise. Due to the limited number of observable interactions, pairwise ranking models face serious \emph{class-imbalance} issues. Our theoretical analysis shows that current sampling-based methods cause the vertex-level imbalance problem, which makes the norm of learned item embeddings towards infinite after a certain training iterations, and consequently results in vanishing gradient and affects the model inference results. We thus propose an efficient \emph{\underline{Vi}tal \underline{N}egative \underline{S}ampler} (VINS) to alleviate the class-imbalance issue for pairwise ranking model, in particular for deep learning models optimized by gradient methods. The core of VINS is a bias sampler with reject probability that will tend to accept a negative candidate with a larger degree weight than the given positive item. Evaluation results on several real datasets demonstrate that the proposed sampling method speeds up the training procedure 30\% to 50\% for ranking models ranging from shallow to deep, while maintaining and even improving the quality of ranking results in top-N item recommendation.Comment: Preprin

    CoSam: An Efficient Collaborative Adaptive Sampler for Recommendation

    Full text link
    Sampling strategies have been widely applied in many recommendation systems to accelerate model learning from implicit feedback data. A typical strategy is to draw negative instances with uniform distribution, which however will severely affect model's convergency, stability, and even recommendation accuracy. A promising solution for this problem is to over-sample the ``difficult'' (a.k.a informative) instances that contribute more on training. But this will increase the risk of biasing the model and leading to non-optimal results. Moreover, existing samplers are either heuristic, which require domain knowledge and often fail to capture real ``difficult'' instances; or rely on a sampler model that suffers from low efficiency. To deal with these problems, we propose an efficient and effective collaborative sampling method CoSam, which consists of: (1) a collaborative sampler model that explicitly leverages user-item interaction information in sampling probability and exhibits good properties of normalization, adaption, interaction information awareness, and sampling efficiency; and (2) an integrated sampler-recommender framework, leveraging the sampler model in prediction to offset the bias caused by uneven sampling. Correspondingly, we derive a fast reinforced training algorithm of our framework to boost the sampler performance and sampler-recommender collaboration. Extensive experiments on four real-world datasets demonstrate the superiority of the proposed collaborative sampler model and integrated sampler-recommender framework.Comment: 21pages, submitting to TOI
    corecore