177,903 research outputs found
Chromium ion plating studies for enhancement of bearing lifetime
Six 440-C hardened stainless steel roller bearing test rods were ion plated with various chromium films of thicknesses from .2 microns to 7 microns. The thinner (approximately .2 microns) coating sample had 3 times the fatigue life of the unplated (standard) specimens. Contrastingly, the samples having thicker coatings (several microns) had short fatigue lives (about 3% of the unplated standard)
XPS and XMCD study of Fe3O4/GaAs interface
Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (NPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe3O4 rather than Fe2O3. XAS and XMCD measurements indicate the presence of nsulating Fe divalent oxide phases (FeO) beneath the surface Fe-3 O-4 layer with the sample thickness above 4 mn. This FeO might act as a barrier for the spin injection into the GaAs
Domain studies of CoCr with perpendicular anisotropy
R.F. Magnetron sputtered CoCr films (79/21 at%) with various thicknesses are magnetically characterized. The domain structure is observed by digitally enhanced Kerr microscopy and depends on the Hc/Hk values of the samples. For low and high coercivity films a comparison is made between the measured VSM hysteresis, domain period and a theoretical domain model. The domain shape is a function of the magnetic history of the sample and the bending created by the deposition process
Simultaneous measurement of distance and thickness of a thin metal plate with an electromagnetic sensor using a simplified model.
This paper presents a simplified model which can describe the inductance change when an air-core coil is placed next to a thin nonmagnetic metallic plate. The model has two independent parameters and is valid for a range of thickness, conductivity, and lift-offs. Use of this new relationship provides a fast and accurate method to measure the distance and thickness simultaneously. Measurements made for a sample coil next to thin copper and aluminum plates of various thicknesses verified the theory and the proposed method. © 2004 IEEE
Capture of manufacturing uncertainty in turbine blades through probabilistic techniques
Efficient designing of the turbine blades is critical to the performance of an aircraft engine.
An area of significant research interest is the capture of manufacturing uncertainty in the
shapes of these turbine blades. The available data used for estimation of this manufacturing
uncertainty inevitably contains the effects of measurement error/noise. In the present work,
we propose the application of Principal Component Analysis (PCA) for de-noising the
measurement data and quantifying the underlying manufacturing uncertainty. Once the
PCA is performed, a method for dimensionality reduction has been proposed which utilizes
prior information available on the variance of measurement error for different
measurement types. Numerical studies indicate that approximately 82% of the variation in
the measurements from their design values is accounted for by the manufacturing
uncertainty, while the remaining 18% variation is filtered out as measurement error
Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations
The quantization of magnetic flux in superconductors is usually seen as
vortices penetrating the sample. While vortices are unstable in bulk type I
superconductors, restricting the superconductor causes a variety of vortex
structures to appear. We present a systematic study of giant vortex states in
type I superconductors obtained by numerically solving the Ginzburg-Landau
equations. The size of the vortices is seen to increase with decreasing film
thickness. In type I superconductors, giant vortices appear at intermediate
thicknesses but they do not form a well-defined vortex lattice. In the thinnest
type I films, singly quantized vortices seem to be stabilized by the geometry
of the sample instead of an increase in the effective Ginzburg-Landau
parameter.Comment: 11 pages, 7 figures, to be published in J. Phys.: Condens. Matte
Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors
We demonstrate simultaneous quantisation of conduction band (CB) and valence
band (VB) states in silicon using ultra-shallow, high density, phosphorus
doping profiles (so-called Si:P -layers). We show that, in addition to
the well known quantisation of CB states within the dopant plane, the
confinement of VB-derived states between the sub-surface P dopant layer and the
Si surface gives rise to a simultaneous quantisation of VB states in this
narrow region. We also show that the VB quantisation can be explained using a
simple particle-in-a-box model, and that the number and energy separation of
the quantised VB states depend on the depth of the P dopant layer beneath the
Si surface. Since the quantised CB states do not show a strong dependence on
the dopant depth (but rather on the dopant density), it is straightforward to
exhibit control over the properties of the quantised CB and VB states
independently of each other by choosing the dopant density and depth
accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia
- …
