426,970 research outputs found
Comparison of stabilization by Vitamin E and 2,6-di-tert-butylphenols during polyethylene radio-thermal-oxidation
This paper reports a compilation of data for PE+Vitamin E and 2,6-di-tert-butylphenols oxidation in radio-thermal ageing. Data unambiguously show that Vitamin E reacts with P° and POO° whereas 2,6-di-tert-butyl phenols only react with POO°. Kinetic parameters of the stabilization reactions for both kinds of antioxidants were tentatively extracted from phenol depletion curves, and discussed regarding the structure of the stabilizer. They were also used for completing an existing kinetic model used for predicting the stabilization by antioxidants. This one permits to compare the efficiency of stabilizer with dose rate or sample thickness
Asymmetric Fiscal Stabilization Policy and the Public Deficit: Theory and Evidence
This paper studies the implications of asymmetric fiscal stabilization policy for the budget deficit. In our model, the government is more concerned about downturns than upturns in economic activity and therefore conducts fiscal stabilization policy in a precautionary way. We show that this type of behavior results in a deficit which on average exceeds its target levelt. We test our hypothesis empirically and find that asymmetric preferences for output stabilization are consistent with how fiscal policy was conducted in a sample of OECD countries during 1987-2005. According to our estimates, the upward bias due to precautionary behavior accounted for roughly 13 percent of the average deficit.
Electrophoretic separator for purifying biologicals
This technique separates a single narrow zone of sample mixture in an electrolyte medium into many zones containing a single component of the mixture and electrolyte between them. Since the densities of the separated zones generally differ from that of the intervening medium, such systems are gravitationally unstable and stabilization is required. The various techniques for stabilization include using the capillary space provided by thin films, the interstices of solid material such as filter paper and a variety of gel-forming substances
Salivary biomarker development using genomic, proteomic and metabolomic approaches.
The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches
Oxygen reduction in acid media on supported iron naphthalocyanine: Effect of isomer configuration and pyrolysis
O2 reduction in H2SO4 medium has been investigated on FeNPc impregnations on Norit BrX by the rotating disk electrode technique. Important differences in activity and stability were found between the 1,2- and 2,3-FeNPc isomers (pyrolysed or not). XPS analyses show, for the most inactive sample, strong demetallation and nitrogen losses. This phenomenon can be attributed to the differences in flexibility between the FeNPc isomers, which influences their stabilization on the substrate
Almost Sure Stabilization for Adaptive Controls of Regime-switching LQ Systems with A Hidden Markov Chain
This work is devoted to the almost sure stabilization of adaptive control
systems that involve an unknown Markov chain. The control system displays
continuous dynamics represented by differential equations and discrete events
given by a hidden Markov chain. Different from previous work on stabilization
of adaptive controlled systems with a hidden Markov chain, where average
criteria were considered, this work focuses on the almost sure stabilization or
sample path stabilization of the underlying processes. Under simple conditions,
it is shown that as long as the feedback controls have linear growth in the
continuous component, the resulting process is regular. Moreover, by
appropriate choice of the Lyapunov functions, it is shown that the adaptive
system is stabilizable almost surely. As a by-product, it is also established
that the controlled process is positive recurrent
Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems
Stabilization of non-stationary linear systems over noisy communication
channels is considered. Stochastically stable sources, and unstable but
noise-free or bounded-noise systems have been extensively studied in
information theory and control theory literature since 1970s, with a renewed
interest in the past decade. There have also been studies on non-causal and
causal coding of unstable/non-stationary linear Gaussian sources. In this
paper, tight necessary and sufficient conditions for stochastic stabilizability
of unstable (non-stationary) possibly multi-dimensional linear systems driven
by Gaussian noise over discrete channels (possibly with memory and feedback)
are presented. Stochastic stability notions include recurrence, asymptotic mean
stationarity and sample path ergodicity, and the existence of finite second
moments. Our constructive proof uses random-time state-dependent stochastic
drift criteria for stabilization of Markov chains. For asymptotic mean
stationarity (and thus sample path ergodicity), it is sufficient that the
capacity of a channel is (strictly) greater than the sum of the logarithms of
the unstable pole magnitudes for memoryless channels and a class of channels
with memory. This condition is also necessary under a mild technical condition.
Sufficient conditions for the existence of finite average second moments for
such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor
- …
