10 research outputs found

    Estimation in the group action channel

    Full text link
    We analyze the problem of estimating a signal from multiple measurements on a \mbox{group action channel} that linearly transforms a signal by a random group action followed by a fixed projection and additive Gaussian noise. This channel is motivated by applications such as multi-reference alignment and cryo-electron microscopy. We focus on the large noise regime prevalent in these applications. We give a lower bound on the mean square error (MSE) of any asymptotically unbiased estimator of the signal's orbit in terms of the signal's moment tensors, which implies that the MSE is bounded away from 0 when N/σ2dN/\sigma^{2d} is bounded from above, where NN is the number of observations, σ\sigma is the noise standard deviation, and dd is the so-called \mbox{moment order cutoff}. In contrast, the maximum likelihood estimator is shown to be consistent if N/σ2dN /\sigma^{2d} diverges.Comment: 5 pages, conferenc

    Heterogeneous multireference alignment: a single pass approach

    Full text link
    Multireference alignment (MRA) is the problem of estimating a signal from many noisy and cyclically shifted copies of itself. In this paper, we consider an extension called heterogeneous MRA, where KK signals must be estimated, and each observation comes from one of those signals, unknown to us. This is a simplified model for the heterogeneity problem notably arising in cryo-electron microscopy. We propose an algorithm which estimates the KK signals without estimating either the shifts or the classes of the observations. It requires only one pass over the data and is based on low-order moments that are invariant under cyclic shifts. Given sufficiently many measurements, one can estimate these invariant features averaged over the KK signals. We then design a smooth, non-convex optimization problem to compute a set of signals which are consistent with the estimated averaged features. We find that, in many cases, the proposed approach estimates the set of signals accurately despite non-convexity, and conjecture the number of signals KK that can be resolved as a function of the signal length LL is on the order of L\sqrt{L}.Comment: 6 pages, 3 figure

    Spectral Methods from Tensor Networks

    Full text link
    A tensor network is a diagram that specifies a way to "multiply" a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case.Comment: 30 pages, 8 figure

    Bispectrum Inversion with Application to Multireference Alignment

    Full text link
    We consider the problem of estimating a signal from noisy circularly-translated versions of itself, called multireference alignment (MRA). One natural approach to MRA could be to estimate the shifts of the observations first, and infer the signal by aligning and averaging the data. In contrast, we consider a method based on estimating the signal directly, using features of the signal that are invariant under translations. Specifically, we estimate the power spectrum and the bispectrum of the signal from the observations. Under mild assumptions, these invariant features contain enough information to infer the signal. In particular, the bispectrum can be used to estimate the Fourier phases. To this end, we propose and analyze a few algorithms. Our main methods consist of non-convex optimization over the smooth manifold of phases. Empirically, in the absence of noise, these non-convex algorithms appear to converge to the target signal with random initialization. The algorithms are also robust to noise. We then suggest three additional methods. These methods are based on frequency marching, semidefinite relaxation and integer programming. The first two methods provably recover the phases exactly in the absence of noise. In the high noise level regime, the invariant features approach for MRA results in stable estimation if the number of measurements scales like the cube of the noise variance, which is the information-theoretic rate. Additionally, it requires only one pass over the data which is important at low signal-to-noise ratio when the number of observations must be large

    Sample Complexity of the Boolean Multireference Alignment Problem

    No full text
    The Boolean multireference alignment problem consists in recovering a Boolean signal from multiple shifted and noisy observations. In this paper we obtain an expression for the error exponent of the maximum A posteriori decoder. This expression is used to characterize the number of measurements needed for signal recovery in the low SNR regime, in terms of higher order autocorrelations of the signal. The characterization is explicit for various signal dimensions, such as prime and even dimensions
    corecore