2,251 research outputs found

    Subsampling Algorithms for Semidefinite Programming

    Full text link
    We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    State-constrained Optimization Problems under Uncertainty: A Tensor Train Approach

    Full text link
    We propose an algorithm to solve optimization problems constrained by partial (ordinary) differential equations under uncertainty, with almost sure constraints on the state variable. To alleviate the computational burden of high-dimensional random variables, we approximate all random fields by the tensor-train decomposition. To enable efficient tensor-train approximation of the state constraints, the latter are handled using the Moreau-Yosida penalty, with an additional smoothing of the positive part (plus/ReLU) function by a softplus function. We derive theoretical bounds on the constraint violation in terms of the Moreau-Yosida regularization parameter and smoothing width of the softplus function. This result also proposes a practical recipe for selecting these two parameters. When the optimization problem is strongly convex, we establish strong convergence of the regularized solution to the optimal control. We develop a second order Newton type method with a fast matrix-free action of the approximate Hessian to solve the smoothed Moreau-Yosida problem. This algorithm is tested on benchmark elliptic problems with random coefficients, optimization problems constrained by random elliptic variational inequalities, and a real-world epidemiological model with 20 random variables. These examples demonstrate mild (at most polynomial) scaling with respect to the dimension and regularization parameters.Comment: 29 page
    • …
    corecore