6,854 research outputs found

    Styling with Attention to Details

    Full text link
    Fashion as characterized by its nature, is driven by style. In this paper, we propose a method that takes into account the style information to complete a given set of selected fashion items with a complementary fashion item. Complementary items are those items that can be worn along with the selected items according to the style. Addressing this problem facilitates in automatically generating stylish fashion ensembles leading to a richer shopping experience for users. Recently, there has been a surge of online social websites where fashion enthusiasts post the outfit of the day and other users can like and comment on them. These posts contain a gold-mine of information about style. In this paper, we exploit these posts to train a deep neural network which captures style in an automated manner. We pose the problem of predicting complementary fashion items as a sequence to sequence problem where the input is the selected set of fashion items and the output is a complementary fashion item based on the style information learned by the model. We use the encoder decoder architecture to solve this problem of completing the set of fashion items. We evaluate the goodness of the proposed model through a variety of experiments. We empirically observe that our proposed model outperforms competitive baseline like apriori algorithm by ~28 in terms of accuracy for top-1 recommendation to complete the fashion ensemble. We also perform retrieval based experiments to understand the ability of the model to learn style and rank the complementary fashion items and find that using attention in our encoder decoder model helps in improving the mean reciprocal rank by ~24. Qualitatively we find the complementary fashion items generated by our proposed model are richer than the apriori algorithm

    Aesthetic-based Clothing Recommendation

    Full text link
    Recently, product images have gained increasing attention in clothing recommendation since the visual appearance of clothing products has a significant impact on consumers' decision. Most existing methods rely on conventional features to represent an image, such as the visual features extracted by convolutional neural networks (CNN features) and the scale-invariant feature transform algorithm (SIFT features), color histograms, and so on. Nevertheless, one important type of features, the \emph{aesthetic features}, is seldom considered. It plays a vital role in clothing recommendation since a users' decision depends largely on whether the clothing is in line with her aesthetics, however the conventional image features cannot portray this directly. To bridge this gap, we propose to introduce the aesthetic information, which is highly relevant with user preference, into clothing recommender systems. To achieve this, we first present the aesthetic features extracted by a pre-trained neural network, which is a brain-inspired deep structure trained for the aesthetic assessment task. Considering that the aesthetic preference varies significantly from user to user and by time, we then propose a new tensor factorization model to incorporate the aesthetic features in a personalized manner. We conduct extensive experiments on real-world datasets, which demonstrate that our approach can capture the aesthetic preference of users and significantly outperform several state-of-the-art recommendation methods.Comment: WWW 201

    Fine-grained Apparel Classification and Retrieval without rich annotations

    Full text link
    The ability to correctly classify and retrieve apparel images has a variety of applications important to e-commerce, online advertising and internet search. In this work, we propose a robust framework for fine-grained apparel classification, in-shop and cross-domain retrieval which eliminates the requirement of rich annotations like bounding boxes and human-joints or clothing landmarks, and training of bounding box/ key-landmark detector for the same. Factors such as subtle appearance differences, variations in human poses, different shooting angles, apparel deformations, and self-occlusion add to the challenges in classification and retrieval of apparel items. Cross-domain retrieval is even harder due to the presence of large variation between online shopping images, usually taken in ideal lighting, pose, positive angle and clean background as compared with street photos captured by users in complicated conditions with poor lighting and cluttered scenes. Our framework uses compact bilinear CNN with tensor sketch algorithm to generate embeddings that capture local pairwise feature interactions in a translationally invariant manner. For apparel classification, we pass the feature embeddings through a softmax classifier, while, the in-shop and cross-domain retrieval pipelines use a triplet-loss based optimization approach, such that squared Euclidean distance between embeddings measures the dissimilarity between the images. Unlike previous works that relied on bounding box, key clothing landmarks or human joint detectors to assist the final deep classifier, proposed framework can be trained directly on the provided category labels or generated triplets for triplet loss optimization. Lastly, Experimental results on the DeepFashion fine-grained categorization, and in-shop and consumer-to-shop retrieval datasets provide a comparative analysis with previous work performed in the domain.Comment: 14 pages, 6 figures, 3 tables, Submitted to Springer Journal of Applied Intelligenc

    Deep Style Match for Complementary Recommendation

    Full text link
    Humans develop a common sense of style compatibility between items based on their attributes. We seek to automatically answer questions like "Does this shirt go well with that pair of jeans?" In order to answer these kinds of questions, we attempt to model human sense of style compatibility in this paper. The basic assumption of our approach is that most of the important attributes for a product in an online store are included in its title description. Therefore it is feasible to learn style compatibility from these descriptions. We design a Siamese Convolutional Neural Network architecture and feed it with title pairs of items, which are either compatible or incompatible. Those pairs will be mapped from the original space of symbolic words into some embedded style space. Our approach takes only words as the input with few preprocessing and there is no laborious and expensive feature engineering.Comment: Workshops at the Thirty-First AAAI Conference on Artificial Intelligenc

    Visually-aware Recommendation with Aesthetic Features

    Full text link
    Visual information plays a critical role in human decision-making process. While recent developments on visually-aware recommender systems have taken the product image into account, none of them has considered the aesthetic aspect. We argue that the aesthetic factor is very important in modeling and predicting users' preferences, especially for some fashion-related domains like clothing and jewelry. This work addresses the need of modeling aesthetic information in visually-aware recommender systems. Technically speaking, we make three key contributions in leveraging deep aesthetic features: (1) To describe the aesthetics of products, we introduce the aesthetic features extracted from product images by a deep aesthetic network. We incorporate these features into recommender system to model users' preferences in the aesthetic aspect. (2) Since in clothing recommendation, time is very important for users to make decision, we design a new tensor decomposition model for implicit feedback data. The aesthetic features are then injected to the basic tensor model to capture the temporal dynamics of aesthetic preferences (e.g., seasonal patterns). (3) We also use the aesthetic features to optimize the learning strategy on implicit feedback data. We enrich the pairwise training samples by considering the similarity among items in the visual space and graph space; the key idea is that a user may likely have similar perception on similar items. We perform extensive experiments on several real-world datasets and demonstrate the usefulness of aesthetic features and the effectiveness of our proposed methods.Comment: Accepted by VLDBJ. arXiv admin note: substantial text overlap with arXiv:1809.0582

    Using Artificial Intelligence to Analyze Fashion Trends

    Full text link
    Analyzing fashion trends is essential in the fashion industry. Current fashion forecasting firms, such as WGSN, utilize the visual information from around the world to analyze and predict fashion trends. However, analyzing fashion trends is time-consuming and extremely labor intensive, requiring individual employees' manual editing and classification. To improve the efficiency of data analysis of such image-based information and lower the cost of analyzing fashion images, this study proposes a data-driven quantitative abstracting approach using an artificial intelligence (A.I.) algorithm. Specifically, an A.I. model was trained on fashion images from a large-scale dataset under different scenarios, for example in online stores and street snapshots. This model was used to detect garments and classify clothing attributes such as textures, garment style, and details for runway photos and videos. It was found that the A.I. model can generate rich attribute descriptions of detected regions and accurately bind the garments in the images. Adoption of A.I. algorithm demonstrated promising results and the potential to classify garment types and details automatically, which can make the process of trend forecasting more cost-effective and faster

    DeepStyle: Multimodal Search Engine for Fashion and Interior Design

    Full text link
    In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application.Comment: Copyright held by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Spectrum-enhanced Pairwise Learning to Rank

    Full text link
    To enhance the performance of the recommender system, side information is extensively explored with various features (e.g., visual features and textual features). However, there are some demerits of side information: (1) the extra data is not always available in all recommendation tasks; (2) it is only for items, there is seldom high-level feature describing users. To address these gaps, we introduce the spectral features extracted from two hypergraph structures of the purchase records. Spectral features describe the \textit{similarity} of users/items in the graph space, which is critical for recommendation. We leverage spectral features to model the users' preference and items' properties by incorporating them into a Matrix Factorization (MF) model. In addition to modeling, we also use spectral features to optimize. Bayesian Personalized Ranking (BPR) is extensively leveraged to optimize models in implicit feedback data. However, in BPR, all missing values are regarded as negative samples equally while many of them are indeed unseen positive ones. We enrich the positive samples by calculating the similarity among users/items by the spectral features. The key ideas are: (1) similar users shall have similar preference on the same item; (2) a user shall have similar perception on similar items. Extensive experiments on two real-world datasets demonstrate the usefulness of the spectral features and the effectiveness of our spectrum-enhanced pairwise optimization. Our models outperform several state-of-the-art models significantly.Comment: 11 pages; submitted to World Wide Web Conference (WWW 2019

    HCRS: A hybrid clothes recommender system based on user ratings and product features

    Full text link
    Nowadays, online clothes-selling business has become popular and extremely attractive because of its convenience and cheap-and-fine price. Good examples of these successful Web sites include Yintai.com, Vancl.com and Shop.vipshop.com which provide thousands of clothes for online shoppers. The challenge for online shoppers lies on how to find a good product from lots of options. In this article, we propose a collaborative clothes recommender for easy shopping. One of the unique features of this system is the ability to recommend clothes in terms of both user ratings and clothing attributes. Experiments in our simulation environment show that the proposed recommender can better satisfy the needs of users.Comment: ICMECG '13 Proceedings of the 2013 International Conference on Management of e-Commerce and e-Government Pages 270-27

    Complete the Look: Scene-based Complementary Product Recommendation

    Full text link
    Modeling fashion compatibility is challenging due to its complexity and subjectivity. Existing work focuses on predicting compatibility between product images (e.g. an image containing a t-shirt and an image containing a pair of jeans). However, these approaches ignore real-world 'scene' images (e.g. selfies); such images are hard to deal with due to their complexity, clutter, variations in lighting and pose (etc.) but on the other hand could potentially provide key context (e.g. the user's body type, or the season) for making more accurate recommendations. In this work, we propose a new task called 'Complete the Look', which seeks to recommend visually compatible products based on scene images. We design an approach to extract training data for this task, and propose a novel way to learn the scene-product compatibility from fashion or interior design images. Our approach measures compatibility both globally and locally via CNNs and attention mechanisms. Extensive experiments show that our method achieves significant performance gains over alternative systems. Human evaluation and qualitative analysis are also conducted to further understand model behavior. We hope this work could lead to useful applications which link large corpora of real-world scenes with shoppable products.Comment: Accepted to CVPR'1
    • …
    corecore