19 research outputs found

    FedCLIP: Fast Generalization and Personalization for CLIP in Federated Learning

    Full text link
    Federated learning (FL) has emerged as a new paradigm for privacy-preserving computation in recent years. Unfortunately, FL faces two critical challenges that hinder its actual performance: data distribution heterogeneity and high resource costs brought by large foundation models. Specifically, the non-IID data in different clients make existing FL algorithms hard to converge while the high resource costs, including computational and communication costs that increase the deployment difficulty in real-world scenarios. In this paper, we propose an effective yet simple method, named FedCLIP, to achieve fast generalization and personalization for CLIP in federated learning. Concretely, we design an attention-based adapter for the large model, CLIP, and the rest operations merely depend on adapters. Lightweight adapters can make the most use of pretrained model information and ensure models be adaptive for clients in specific tasks. Simultaneously, small-scale operations can mitigate the computational burden and communication burden caused by large models. Extensive experiments are conducted on three datasets with distribution shifts. Qualitative and quantitative results demonstrate that FedCLIP significantly outperforms other baselines (9% overall improvements on PACS) and effectively reduces computational and communication costs (283x faster than FedAVG). Our code will be available at: https://github.com/microsoft/PersonalizedFL.Comment: Accepted by IEEE Data Engineering Bulletin; code is at: https://github.com/microsoft/PersonalizedF

    SCEI: A Smart-Contract Driven Edge Intelligence Framework for IoT Systems

    Full text link
    Federated learning (FL) utilizes edge computing devices to collaboratively train a shared model while each device can fully control its local data access. Generally, FL techniques focus on learning model on independent and identically distributed (iid) dataset and cannot achieve satisfiable performance on non-iid datasets (e.g. learning a multi-class classifier but each client only has a single class dataset). Some personalized approaches have been proposed to mitigate non-iid issues. However, such approaches cannot handle underlying data distribution shift, namely data distribution skew, which is quite common in real scenarios (e.g. recommendation systems learn user behaviors which change over time). In this work, we provide a solution to the challenge by leveraging smart-contract with federated learning to build optimized, personalized deep learning models. Specifically, our approach utilizes smart contract to reach consensus among distributed trainers on the optimal weights of personalized models. We conduct experiments across multiple models (CNN and MLP) and multiple datasets (MNIST and CIFAR-10). The experimental results demonstrate that our personalized learning models can achieve better accuracy and faster convergence compared to classic federated and personalized learning. Compared with the model given by baseline FedAvg algorithm, the average accuracy of our personalized learning models is improved by 2% to 20%, and the convergence rate is about 2×\times faster. Moreover, we also illustrate that our approach is secure against recent attack on distributed learning.Comment: 12 pages, 9 figure

    Federated Robustness Propagation: Sharing Adversarial Robustness in Federated Learning

    Full text link
    Federated learning (FL) emerges as a popular distributed learning schema that learns a model from a set of participating users without requiring raw data to be shared. One major challenge of FL comes from heterogeneity in users, which may have distributionally different (or non-iid) data and varying computation resources. Just like in centralized learning, FL users also desire model robustness against malicious attackers at test time. Whereas adversarial training (AT) provides a sound solution for centralized learning, extending its usage for FL users has imposed significant challenges, as many users may have very limited training data as well as tight computational budgets, to afford the data-hungry and costly AT. In this paper, we study a novel learning setting that propagates adversarial robustness from high-resource users that can afford AT, to those low-resource users that cannot afford it, during the FL process. We show that existing FL techniques cannot effectively propagate adversarial robustness among non-iid users, and propose a simple yet effective propagation approach that transfers robustness through carefully designed batch-normalization statistics. We demonstrate the rationality and effectiveness of our method through extensive experiments. Especially, the proposed method is shown to grant FL remarkable robustness even when only a small portion of users afford AT during learning. Codes will be published upon acceptance
    corecore