2,112 research outputs found

    Inner and Inter Label Propagation: Salient Object Detection in the Wild

    Full text link
    In this paper, we propose a novel label propagation based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a 3-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark datasets with pixel-wise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.Comment: The full version of the TIP 2015 publicatio

    SaliencyRank: Two-stage manifold ranking for salient object detection

    Get PDF

    Salient Object Detection via Structured Matrix Decomposition

    Get PDF
    Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201
    • …
    corecore