794,060 research outputs found
Salient object subitizing
We study the problem of salient object subitizing, i.e. predicting the existence and the number of salient objects in an image using holistic cues. This task is inspired by the ability of people to quickly and accurately identify the number of items within the subitizing range (1–4). To this end, we present a salient object subitizing image dataset of about 14 K everyday images which are annotated using an online crowdsourcing marketplace. We show that using an end-to-end trained convolutional neural network (CNN) model, we achieve prediction accuracy comparable to human performance in identifying images with zero or one salient object. For images with multiple salient objects, our model also provides significantly better than chance performance without requiring any localization process. Moreover, we propose a method to improve the training of the CNN subitizing model by leveraging synthetic images. In experiments, we demonstrate the accuracy and generalizability of our CNN subitizing model and its applications in salient object detection and image retrieval.This research was supported in part by US NSF Grants 0910908 and 1029430, and gifts from Adobe and NVIDIA. (0910908 - US NSF; 1029430 - US NSF)https://arxiv.org/abs/1607.07525https://arxiv.org/pdf/1607.07525.pdfAccepted manuscrip
Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground
We provide a comprehensive evaluation of salient object detection (SOD)
models. Our analysis identifies a serious design bias of existing SOD datasets
which assumes that each image contains at least one clearly outstanding salient
object in low clutter. The design bias has led to a saturated high performance
for state-of-the-art SOD models when evaluated on existing datasets. The
models, however, still perform far from being satisfactory when applied to
real-world daily scenes. Based on our analyses, we first identify 7 crucial
aspects that a comprehensive and balanced dataset should fulfill. Then, we
propose a new high quality dataset and update the previous saliency benchmark.
Specifically, our SOC (Salient Objects in Clutter) dataset, includes images
with salient and non-salient objects from daily object categories. Beyond
object category annotations, each salient image is accompanied by attributes
that reflect common challenges in real-world scenes. Finally, we report
attribute-based performance assessment on our dataset.Comment: ECCV 201
The Secrets of Salient Object Segmentation
In this paper we provide an extensive evaluation of fixation prediction and
salient object segmentation algorithms as well as statistics of major datasets.
Our analysis identifies serious design flaws of existing salient object
benchmarks, called the dataset design bias, by over emphasizing the
stereotypical concepts of saliency. The dataset design bias does not only
create the discomforting disconnection between fixations and salient object
segmentation, but also misleads the algorithm designing. Based on our analysis,
we propose a new high quality dataset that offers both fixation and salient
object segmentation ground-truth. With fixations and salient object being
presented simultaneously, we are able to bridge the gap between fixations and
salient objects, and propose a novel method for salient object segmentation.
Finally, we report significant benchmark progress on three existing datasets of
segmenting salient objectsComment: 15 pages, 8 figures. Conference version was accepted by CVPR 201
Recommended from our members
Salient selves in uncertain futures
We examined possible selves during three distinct periods of uncertainty. Cancer survivors (Study 1a) and survivors’ romantic partners (Study 1b) rated the salience of possible selves in which the cancer did (negative possible self; NPS) and did not (positive possible self; PPS) return. Study 2 mapped PPS and NPS salience throughout the four-month wait for bar exam results. Study 3 experimentally primed possible selves among participants awaiting medical test results. PPS salience correlated positively, and NPS negatively, with indicators of health and well-being, and inducing focus on one’s NPS led to greater negative emotion and worry compared to a PPS induction, but not less positive emotion. These results illustrate the well-being implications of possible selves during periods of uncertainty
Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection
In this work, we propose an efficient and effective approach for
unconstrained salient object detection in images using deep convolutional
neural networks. Instead of generating thousands of candidate bounding boxes
and refining them, our network directly learns to generate the saliency map
containing the exact number of salient objects. During training, we convert the
ground-truth rectangular boxes to Gaussian distributions that better capture
the ROI regarding individual salient objects. During inference, the network
predicts Gaussian distributions centered at salient objects with an appropriate
covariance, from which bounding boxes are easily inferred. Notably, our network
performs saliency map prediction without pixel-level annotations, salient
object detection without object proposals, and salient object subitizing
simultaneously, all in a single pass within a unified framework. Extensive
experiments show that our approach outperforms existing methods on various
datasets by a large margin, and achieves more than 100 fps with VGG16 network
on a single GPU during inference
Improvised Salient Object Detection and Manipulation
In case of salient subject recognition, computer algorithms have been heavily
relied on scanning of images from top-left to bottom-right systematically and
apply brute-force when attempting to locate objects of interest. Thus, the
process turns out to be quite time consuming. Here a novel approach and a
simple solution to the above problem is discussed. In this paper, we implement
an approach to object manipulation and detection through segmentation map,
which would help to desaturate or, in other words, wash out the background of
the image. Evaluation for the performance is carried out using the Jaccard
index against the well-known Ground-truth target box technique.Comment: 7 page
- …
