2,889 research outputs found

    Review of Visual Saliency Detection with Comprehensive Information

    Full text link
    Visual saliency detection model simulates the human visual system to perceive the scene, and has been widely used in many vision tasks. With the acquisition technology development, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. Co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discission are conducted to provide a holistic overview of different saliency detection methods.Comment: 18 pages, 11 figures, 7 tables, Accepted by IEEE Transactions on Circuits and Systems for Video Technology 2018, https://rmcong.github.io

    HSCS: Hierarchical Sparsity Based Co-saliency Detection for RGBD Images

    Full text link
    Co-saliency detection aims to discover common and salient objects in an image group containing more than two relevant images. Moreover, depth information has been demonstrated to be effective for many computer vision tasks. In this paper, we propose a novel co-saliency detection method for RGBD images based on hierarchical sparsity reconstruction and energy function refinement. With the assistance of the intra saliency map, the inter-image correspondence is formulated as a hierarchical sparsity reconstruction framework. The global sparsity reconstruction model with a ranking scheme focuses on capturing the global characteristics among the whole image group through a common foreground dictionary. The pairwise sparsity reconstruction model aims to explore the corresponding relationship between pairwise images through a set of pairwise dictionaries. In order to improve the intra-image smoothness and inter-image consistency, an energy function refinement model is proposed, which includes the unary data term, spatial smooth term, and holistic consistency term. Experiments on two RGBD co-saliency detection benchmarks demonstrate that the proposed method outperforms the state-of-the-art algorithms both qualitatively and quantitatively.Comment: 11 pages, 5 figures, Accepted by IEEE Transactions on Multimedia, https://rmcong.github.io

    Video Smoke Detection Based on Deep Saliency Network

    Full text link
    Video smoke detection is a promising fire detection method especially in open or large spaces and outdoor environments. Traditional video smoke detection methods usually consist of candidate region extraction and classification, but lack powerful characterization for smoke. In this paper, we propose a novel video smoke detection method based on deep saliency network. Visual saliency detection aims to highlight the most important object regions in an image. The pixel-level and object-level salient convolutional neural networks are combined to extract the informative smoke saliency map. An end-to-end framework for salient smoke detection and existence prediction of smoke is proposed for application in video smoke detection. The deep feature map is combined with the saliency map to predict the existence of smoke in an image. Initial and augmented dataset are built to measure the performance of frameworks with different design strategies. Qualitative and quantitative analysis at frame-level and pixel-level demonstrate the excellent performance of the ultimate framework.Comment: 21 pages, 12 figure

    A dense subgraph based algorithm for compact salient image region detection

    Full text link
    We present an algorithm for graph based saliency computation that utilizes the underlying dense subgraphs in finding visually salient regions in an image. To compute the salient regions, the model first obtains a saliency map using random walks on a Markov chain. Next, k-dense subgraphs are detected to further enhance the salient regions in the image. Dense subgraphs convey more information about local graph structure than simple centrality measures. To generate the Markov chain, intensity and color features of an image in addition to region compactness is used. For evaluating the proposed model, we do extensive experiments on benchmark image data sets. The proposed method performs comparable to well-known algorithms in salient region detection.Comment: 33 pages, 18 figures, Single column manuscript pre-print, Accepted at Computer Vision and Image Understanding, Elsevie

    Saliency guided deep network for weakly-supervised image segmentation

    Full text link
    Weakly-supervised image segmentation is an important task in computer vision. A key problem is how to obtain high quality objects location from image-level category. Classification activation mapping is a common method which can be used to generate high-precise object location cues. However these location cues are generally very sparse and small such that they can not provide effective information for image segmentation. In this paper, we propose a saliency guided image segmentation network to resolve this problem. We employ a self-attention saliency method to generate subtle saliency maps, and render the location cues grow as seeds by seeded region growing method to expand pixel-level labels extent. In the process of seeds growing, we use the saliency values to weight the similarity between pixels to control the growing. Therefore saliency information could help generate discriminative object regions, and the effects of wrong salient pixels can be suppressed efficiently. Experimental results on a common segmentation dataset PASCAL VOC2012 demonstrate the effectiveness of our method

    Bootstrapping Robotic Ecological Perception from a Limited Set of Hypotheses Through Interactive Perception

    Full text link
    To solve its task, a robot needs to have the ability to interpret its perceptions. In vision, this interpretation is particularly difficult and relies on the understanding of the structure of the scene, at least to the extent of its task and sensorimotor abilities. A robot with the ability to build and adapt this interpretation process according to its own tasks and capabilities would push away the limits of what robots can achieve in a non controlled environment. A solution is to provide the robot with processes to build such representations that are not specific to an environment or a situation. A lot of works focus on objects segmentation, recognition and manipulation. Defining an object solely on the basis of its visual appearance is challenging given the wide range of possible objects and environments. Therefore, current works make simplifying assumptions about the structure of a scene. Such assumptions reduce the adaptivity of the object extraction process to the environments in which the assumption holds. To limit such assumptions, we introduce an exploration method aimed at identifying moveable elements in a scene without considering the concept of object. By using the interactive perception framework, we aim at bootstrapping the acquisition process of a representation of the environment with a minimum of context specific assumptions. The robotic system builds a perceptual map called relevance map which indicates the moveable parts of the current scene. A classifier is trained online to predict the category of each region (moveable or non-moveable). It is also used to select a region with which to interact, with the goal of minimizing the uncertainty of the classification. A specific classifier is introduced to fit these needs: the collaborative mixture models classifier. The method is tested on a set of scenarios of increasing complexity, using both simulations and a PR2 robot.Comment: 21 pages, 21 figure

    NeRD: a Neural Response Divergence Approach to Visual Salience Detection

    Full text link
    In this paper, a novel approach to visual salience detection via Neural Response Divergence (NeRD) is proposed, where synaptic portions of deep neural networks, previously trained for complex object recognition, are leveraged to compute low level cues that can be used to compute image region distinctiveness. Based on this concept , an efficient visual salience detection framework is proposed using deep convolutional StochasticNets. Experimental results using CSSD and MSRA10k natural image datasets show that the proposed NeRD approach can achieve improved performance when compared to state-of-the-art image saliency approaches, while the attaining low computational complexity necessary for near-real-time computer vision applications.Comment: 5 page

    PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast Measures with Edge-Preserving Coherence

    Full text link
    Driven by recent vision and graphics applications such as image segmentation and object recognition, computing pixel-accurate saliency values to uniformly highlight foreground objects becomes increasingly important. In this paper, we propose a unified framework called PISA, which stands for Pixelwise Image Saliency Aggregating various bottom-up cues and priors. It generates spatially coherent yet detail-preserving, pixel-accurate and fine-grained saliency, and overcomes the limitations of previous methods which use homogeneous superpixel-based and color only treatment. PISA aggregates multiple saliency cues in a global context such as complementary color and structure contrast measures with their spatial priors in the image domain. The saliency confidence is further jointly modeled with a neighborhood consistence constraint into an energy minimization formulation, in which each pixel will be evaluated with multiple hypothetical saliency levels. Instead of using global discrete optimization methods, we employ the cost-volume filtering technique to solve our formulation, assigning the saliency levels smoothly while preserving the edge-aware structure details. In addition, a faster version of PISA is developed using a gradient-driven image sub-sampling strategy to greatly improve the runtime efficiency while keeping comparable detection accuracy. Extensive experiments on a number of public datasets suggest that PISA convincingly outperforms other state-of-the-art approaches. In addition, with this work we also create a new dataset containing 800800 commodity images for evaluating saliency detection. The dataset and source code of PISA can be downloaded at http://vision.sysu.edu.cn/project/PISA/Comment: 14 pages, 14 figures, 1 table, to appear in IEEE Transactions on Image Processin

    Coarse-to-Fine Salient Object Detection with Low-Rank Matrix Recovery

    Full text link
    Low-Rank Matrix Recovery (LRMR) has recently been applied to saliency detection by decomposing image features into a low-rank component associated with background and a sparse component associated with visual salient regions. Despite its great potential, existing LRMR-based saliency detection methods seldom consider the inter-relationship among elements within these two components, thus are prone to generating scattered or incomplete saliency maps. In this paper, we introduce a novel and efficient LRMR-based saliency detection model under a coarse-to-fine framework to circumvent this limitation. First, we roughly measure the saliency of image regions with a baseline LRMR model that integrates a â„“1\ell_1-norm sparsity constraint and a Laplacian regularization smooth term. Given samples from the coarse saliency map, we then learn a projection that maps image features to refined saliency values, to significantly sharpen the object boundaries and to preserve the object entirety. We evaluate our framework against existing LRMR-based methods on three benchmark datasets. Experimental results validate the superiority of our method as well as the effectiveness of our suggested coarse-to-fine framework, especially for images containing multiple objects.Comment: Manuscript accepted by Neurocomputing, matlab code is available from https://github.com/qizhust/HLRSalienc

    Image Co-segmentation via Multi-scale Local Shape Transfer

    Full text link
    Image co-segmentation is a challenging task in computer vision that aims to segment all pixels of the objects from a predefined semantic category. In real-world cases, however, common foreground objects often vary greatly in appearance, making their global shapes highly inconsistent across images and difficult to be segmented. To address this problem, this paper proposes a novel co-segmentation approach that transfers patch-level local object shapes which appear more consistent across different images. In our framework, a multi-scale patch neighbourhood system is first generated using proposal flow on arbitrary image-pair, which is further refined by Locally Linear Embedding. Based on the patch relationships, we propose an efficient algorithm to jointly segment the objects in each image while transferring their local shapes across different images. Extensive experiments demonstrate that the proposed method can robustly and effectively segment common objects from an image set. On iCoseg, MSRC and Coseg-Rep dataset, the proposed approach performs comparable or better than the state-of-thearts, while on a more challenging benchmark Fashionista dataset, our method achieves significant improvements.Comment: An extention of our previous stud
    • …
    corecore