2 research outputs found

    Robust object detection under partial occlusion

    Full text link
    This thesis focuses on the problem of object detection under partial occlusion in complex scenes through exploring new bottom-up and top-down detection models to cope with object discontinuities and ambiguity caused by partial occlusion and allow for a more robust and adaptive detection of varied objects from different scenes

    Saliency detection using hierarchical manifold learning

    Full text link
    Saliency detection is critical to many applications in computer vision by eliminating redundant backgrounds. The saliency detection approaches can be divided into two categories, i.e., top-down and bottom-up. Among them, bottom-up models have attracted more attention due to their simple mechanisms. However, many existing bottom-up models are not robust to crowded backgrounds because of missing salient regions within feedforward frameworks which is often not effective for complex scenes. We tackle these problems by modifying and extending a bottom-up saliency detection model through three phases, (1) constructing a hierarchical sequence of images from the perspective of entropy, (2) estimated mid-level cues are used as feedback information, (3) subsequently generating saliency maps by global context and local uniqueness in a graph-based framework. We also compare the proposed bottom-up model with state-of-the-art approaches on two benchmark datasets to evaluate its saliency detection performance. The experimental results demonstrate that the proposed bottom-up saliency detection approach is not only robust to both cluttered and clean scenes, but also able to obtain objects with different scales
    corecore