8,394 research outputs found

    Ethical and Social Aspects of Self-Driving Cars

    Full text link
    As an envisaged future of transportation, self-driving cars are being discussed from various perspectives, including social, economical, engineering, computer science, design, and ethics. On the one hand, self-driving cars present new engineering problems that are being gradually successfully solved. On the other hand, social and ethical problems are typically being presented in the form of an idealized unsolvable decision-making problem, the so-called trolley problem, which is grossly misleading. We argue that an applied engineering ethical approach for the development of new technology is what is needed; the approach should be applied, meaning that it should focus on the analysis of complex real-world engineering problems. Software plays a crucial role for the control of self-driving cars; therefore, software engineering solutions should seriously handle ethical and social considerations. In this paper we take a closer look at the regulative instruments, standards, design, and implementations of components, systems, and services and we present practical social and ethical challenges that have to be met, as well as novel expectations for software engineering.Comment: 11 pages, 3 figures, 2 table

    Health and safety in the United Kingdom higher education libraries: a review of the literature

    Get PDF
    The focus of this article is to review the literature relating to health and safety in UK Higher Education libraries. This will include an overview of the literature on accident theories and also the human element. Various key findings emerge from this analysis. Personal safety is achieved through self-responsibility, following guidelines and having a working knowledge of reporting procedures. A safety culture in the work environment is developed through a proactive approach on the part of management, the provision of information, training, and carrying out safety inspections. These inspections are aimed at preventing the environment from creating a situation where an accident could occur. There can never be a work environment in which no accidents will occur and best practice can only minimize the risk of accidents

    Detecting Distracted Driving with Deep Learning

    Get PDF
    © Springer International Publishing AG 2017Driver distraction is the leading factor in most car crashes and near-crashes. This paper discusses the types, causes and impacts of distracted driving. A deep learning approach is then presented for the detection of such driving behaviors using images of the driver, where an enhancement has been made to a standard convolutional neural network (CNN). Experimental results on Kaggle challenge dataset have confirmed the capability of a convolutional neural network (CNN) in this complicated computer vision task and illustrated the contribution of the CNN enhancement to a better pattern recognition accuracy.Peer reviewe

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio

    Parallelized Interactive Machine Learning on Autonomous Vehicles

    Full text link
    Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by learning directly from image input. A deep neural network is used as a function approximator and requires no specific state information. However, one drawback of using only images as input is that this approach requires a prohibitively large amount of training time and data for the model to learn the state feature representation and approach reasonable performance. This is not feasible in real-world applications, especially when the data are expansive and training phase could introduce disasters that affect human safety. In this work, we use a human demonstration approach to speed up training for learning features and use the resulting pre-trained model to replace the neural network in the deep RL Deep Q-Network (DQN), followed by human interaction to further refine the model. We empirically evaluate our approach by using only a human demonstration model and modified DQN with human demonstration model included in the Microsoft AirSim car simulator. Our results show that (1) pre-training with human demonstration in a supervised learning approach is better and much faster at discovering features than DQN alone, (2) initializing the DQN with a pre-trained model provides a significant improvement in training time and performance even with limited human demonstration, and (3) providing the ability for humans to supply suggestions during DQN training can speed up the network's convergence on an optimal policy, as well as allow it to learn more complex policies that are harder to discover by random exploration.Comment: 6 pages, NAECON 2018 - IEEE National Aerospace and Electronics Conferenc
    • …
    corecore