3 research outputs found

    Convergence of Multi-Agent Learning with a Finite Step Size in General-Sum Games

    Full text link
    Learning in a multi-agent system is challenging because agents are simultaneously learning and the environment is not stationary, undermining convergence guarantees. To address this challenge, this paper presents a new gradient-based learning algorithm, called Gradient Ascent with Shrinking Policy Prediction (GA-SPP), which augments the basic gradient ascent approach with the concept of shrinking policy prediction. The key idea behind this algorithm is that an agent adjusts its strategy in response to the forecasted strategy of the other agent, instead of its current one. GA-SPP is shown formally to have Nash convergence in larger settings than existing gradient-based multi-agent learning methods. Furthermore, unlike existing gradient-based methods, GA-SPP's theoretical guarantees do not assume the learning rate to be infinitesimal.Comment: AAMAS 201

    A Survey and Critique of Multiagent Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has led to a dramatic increase in the number of applications and methods. Recent works have explored learning beyond single-agent scenarios and have considered multiagent learning (MAL) scenarios. Initial results report successes in complex multiagent domains, although there are several challenges to be addressed. The primary goal of this article is to provide a clear overview of current multiagent deep reinforcement learning (MDRL) literature. Additionally, we complement the overview with a broader analysis: (i) we revisit previous key components, originally presented in MAL and RL, and highlight how they have been adapted to multiagent deep reinforcement learning settings. (ii) We provide general guidelines to new practitioners in the area: describing lessons learned from MDRL works, pointing to recent benchmarks, and outlining open avenues of research. (iii) We take a more critical tone raising practical challenges of MDRL (e.g., implementation and computational demands). We expect this article will help unify and motivate future research to take advantage of the abundant literature that exists (e.g., RL and MAL) in a joint effort to promote fruitful research in the multiagent community.Comment: Under review since Oct 2018. Earlier versions of this work had the title: "Is multiagent deep reinforcement learning the answer or the question? A brief survey

    A Survey of Learning in Multiagent Environments: Dealing with Non-Stationarity

    Full text link
    The key challenge in multiagent learning is learning a best response to the behaviour of other agents, which may be non-stationary: if the other agents adapt their strategy as well, the learning target moves. Disparate streams of research have approached non-stationarity from several angles, which make a variety of implicit assumptions that make it hard to keep an overview of the state of the art and to validate the innovation and significance of new works. This survey presents a coherent overview of work that addresses opponent-induced non-stationarity with tools from game theory, reinforcement learning and multi-armed bandits. Further, we reflect on the principle approaches how algorithms model and cope with this non-stationarity, arriving at a new framework and five categories (in increasing order of sophistication): ignore, forget, respond to target models, learn models, and theory of mind. A wide range of state-of-the-art algorithms is classified into a taxonomy, using these categories and key characteristics of the environment (e.g., observability) and adaptation behaviour of the opponents (e.g., smooth, abrupt). To clarify even further we present illustrative variations of one domain, contrasting the strengths and limitations of each category. Finally, we discuss in which environments the different approaches yield most merit, and point to promising avenues of future research.Comment: 64 pages, 7 figures. Under review since November 201
    corecore