2,004 research outputs found

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-

    Safe Q-learning for continuous-time linear systems

    Full text link
    Q-learning is a promising method for solving optimal control problems for uncertain systems without the explicit need for system identification. However, approaches for continuous-time Q-learning have limited provable safety guarantees, which restrict their applicability to real-time safety-critical systems. This paper proposes a safe Q-learning algorithm for partially unknown linear time-invariant systems to solve the linear quadratic regulator problem with user-defined state constraints. We frame the safe Q-learning problem as a constrained optimal control problem using reciprocal control barrier functions and show that such an extension provides a safety-assured control policy. To the best of our knowledge, Q-learning for continuous-time systems with state constraints has not yet been reported in the literature
    • …
    corecore