3 research outputs found

    SafeLife 1.0: Exploring Side Effects in Complex Environments

    Full text link
    We present SafeLife, a publicly available reinforcement learning environment that tests the safety of reinforcement learning agents. It contains complex, dynamic, tunable, procedurally generated levels with many opportunities for unsafe behavior. Agents are graded both on their ability to maximize their explicit reward and on their ability to operate safely without unnecessary side effects. We train agents to maximize rewards using proximal policy optimization and score them on a suite of benchmark levels. The resulting agents are performant but not safe -- they tend to cause large side effects in their environments -- but they form a baseline against which future safety research can be measured.Comment: Updated version was presented at the AAAI SafeAI 2020 Workshop, but now with updated contact info. Previously presented at the 2019 NeurIPS Safety and Robustness in Decision Making Worksho

    Safety Aware Reinforcement Learning (SARL)

    Full text link
    As reinforcement learning agents become increasingly integrated into complex, real-world environments, designing for safety becomes a critical consideration. We specifically focus on researching scenarios where agents can cause undesired side effects while executing a policy on a primary task. Since one can define multiple tasks for a given environment dynamics, there are two important challenges. First, we need to abstract the concept of safety that applies broadly to that environment independent of the specific task being executed. Second, we need a mechanism for the abstracted notion of safety to modulate the actions of agents executing different policies to minimize their side-effects. In this work, we propose Safety Aware Reinforcement Learning (SARL) - a framework where a virtual safe agent modulates the actions of a main reward-based agent to minimize side effects. The safe agent learns a task-independent notion of safety for a given environment. The main agent is then trained with a regularization loss given by the distance between the native action probabilities of the two agents. Since the safe agent effectively abstracts a task-independent notion of safety via its action probabilities, it can be ported to modulate multiple policies solving different tasks within the given environment without further training. We contrast this with solutions that rely on task-specific regularization metrics and test our framework on the SafeLife Suite, based on Conway's Game of Life, comprising a number of complex tasks in dynamic environments. We show that our solution is able to match the performance of solutions that rely on task-specific side-effect penalties on both the primary and safety objectives while additionally providing the benefit of generalizability and portability

    Avoiding Side Effects in Complex Environments

    Full text link
    Reward function specification can be difficult, even in simple environments. Realistic environments contain millions of states. Rewarding the agent for making a widget may be easy, but penalizing the multitude of possible negative side effects is hard. In toy environments, Attainable Utility Preservation (AUP) avoids side effects by penalizing shifts in the ability to achieve randomly generated goals. We scale this approach to large, randomly generated environments based on Conway's Game of Life. By preserving optimal value for a single randomly generated reward function, AUP incurs modest overhead, completes the specified task, and avoids side effects.Comment: 16 pages with appendice
    corecore