34 research outputs found

    Safe and Robust Learning Control with Gaussian Processes

    Get PDF
    Abstract-This paper introduces a learning-based robust control algorithm that provides robust stability and performance guarantees during learning. The approach uses Gaussian process (GP) regression based on data gathered during operation to update an initial model of the system and to gradually decrease the uncertainty related to this model. Embedding this data-based update scheme in a robust control framework guarantees stability during the learning process. Traditional robust control approaches have not considered online adaptation of the model and its uncertainty before. As a result, their controllers do not improve performance during operation. Typical machine learning algorithms that have achieved similar high-performance behavior by adapting the model and controller online do not provide the guarantees presented in this paper. In particular, this paper considers a stabilization task, linearizes the nonlinear, GP-based model around a desired operating point, and solves a convex optimization problem to obtain a linear robust controller. The resulting performance improvements due to the learning-based controller are demonstrated in experiments on a quadrotor vehicle

    Safe Controller Optimization for Quadrotors with Gaussian Processes

    Full text link
    One of the most fundamental problems when designing controllers for dynamic systems is the tuning of the controller parameters. Typically, a model of the system is used to obtain an initial controller, but ultimately the controller parameters must be tuned manually on the real system to achieve the best performance. To avoid this manual tuning step, methods from machine learning, such as Bayesian optimization, have been used. However, as these methods evaluate different controller parameters on the real system, safety-critical system failures may happen. In this paper, we overcome this problem by applying, for the first time, a recently developed safe optimization algorithm, SafeOpt, to the problem of automatic controller parameter tuning. Given an initial, low-performance controller, SafeOpt automatically optimizes the parameters of a control law while guaranteeing safety. It models the underlying performance measure as a Gaussian process and only explores new controller parameters whose performance lies above a safe performance threshold with high probability. Experimental results on a quadrotor vehicle indicate that the proposed method enables fast, automatic, and safe optimization of controller parameters without human intervention.Comment: IEEE International Conference on Robotics and Automation, 2016. 6 pages, 4 figures. A video of the experiments can be found at http://tiny.cc/icra16_video . A Python implementation of the algorithm is available at https://github.com/befelix/SafeOp

    Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

    Get PDF
    Many modern nonlinear control methods aim to endow systems with guaranteed properties, such as stability or safety, and have been successfully applied to the domain of robotics. However, model uncertainty remains a persistent challenge, weakening theoretical guarantees and causing implementation failures on physical systems. This paper develops a machine learning framework centered around Control Lyapunov Functions (CLFs) to adapt to parametric uncertainty and unmodeled dynamics in general robotic systems. Our proposed method proceeds by iteratively updating estimates of Lyapunov function derivatives and improving controllers, ultimately yielding a stabilizing quadratic program model-based controller. We validate our approach on a planar Segway simulation, demonstrating substantial performance improvements by iteratively refining on a base model-free controller

    Pseudospectral Model Predictive Control under Partially Learned Dynamics

    Full text link
    Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques, utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with model predictive pseudospectral control, we demonstrate this technique on both a cart pole and quadrotor simulation with unmodeled damping and parametric error. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We implement this online learning technique on a cart pole and quadrator, then demonstrate the use of online learning and obstacle avoidance for the dubin vehicle dynamics.Comment: Accepted but withdrawn from AIAA Scitech 201

    Multi-Robot Transfer Learning: A Dynamical System Perspective

    Full text link
    Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.Comment: 7 pages, 6 figures, accepted at the 2017 IEEE/RSJ International Conference on Intelligent Robots and System

    On the Role of Models in Learning Control: Actor-Critic Iterative Learning Control

    Get PDF
    Learning from data of past tasks can substantially improve the accuracy of mechatronic systems. Often, for fast and safe learning a model of the system is required. The aim of this paper is to develop a model-free approach for fast and safe learning for mechatronic systems. The developed actor-critic iterative learning control (ACILC) framework uses a feedforward parameterization with basis functions. These basis functions encode implicit model knowledge and the actor-critic algorithm learns the feedforward parameters without explicitly using a model. Experimental results on a printer setup demonstrate that the developed ACILC framework is capable of achieving the same feedforward signal as preexisting model-based methods without using explicit model knowledge.Comment: 6 pages, 4 figures, 21st IFAC World Congress 202
    corecore