121 research outputs found

    Most Important Fundamental Rule of Poker Strategy

    Full text link
    Poker is a large complex game of imperfect information, which has been singled out as a major AI challenge problem. Recently there has been a series of breakthroughs culminating in agents that have successfully defeated the strongest human players in two-player no-limit Texas hold 'em. The strongest agents are based on algorithms for approximating Nash equilibrium strategies, which are stored in massive binary files and unintelligible to humans. A recent line of research has explored approaches for extrapolating knowledge from strong game-theoretic strategies that can be understood by humans. This would be useful when humans are the ultimate decision maker and allow humans to make better decisions from massive algorithmically-generated strategies. Using techniques from machine learning we have uncovered a new simple, fundamental rule of poker strategy that leads to a significant improvement in performance over the best prior rule and can also easily be applied by human players

    Selective search in games of different complexity

    Get PDF

    Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games

    Get PDF
    Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, where the task is to coordinate multiple agents as a team to defeat their enemies. To maintain a scalable yet effective communication protocol, we introduce a Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a vectorised extension of actor-critic formulation. We show that BiCNet can handle different types of combats with arbitrary numbers of AI agents for both sides. Our analysis demonstrates that without any supervisions such as human demonstrations or labelled data, BiCNet could learn various types of advanced coordination strategies that have been commonly used by experienced game players. In our experiments, we evaluate our approach against multiple baselines under different scenarios; it shows state-of-the-art performance, and possesses potential values for large-scale real-world applications.Comment: 10 pages, 10 figures. Previously as title: "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games", Mar 201
    • …
    corecore