163,328 research outputs found
Construction of cytoplasmic molecular markers distinguishing Danio rerio from Gobiocypris rarus at high identity domains based on MP-PCR strategy and Sybr Green I detection
To distinguish the cytoplasm of Danio rerio from that of Gobiocypris rarus, we cloned G. rarus COXI and constructed cytoplasmic molecular markers at the high identity domains of COXI by mutated primer PCR (MP-PCR for short). Then Sybr Green I was used to detect the single amplicon. As a result, we succeeded in getting the cytoplasmic molecular markers, G.M COXI and Z.M COXI, by MP-PCR strategy. They were used to detect the sperm-derived mtDNA in the sexual hybrid embryos (D. rerio female x G. rarus male) before the sphere stage. In the present study, all results demonstrate that MP-PCR approach and Sybr Green I detection are feasible to construct the molecular markers to identify genes that shared high identity.To distinguish the cytoplasm of Danio rerio from that of Gobiocypris rarus, we cloned G. rarus COXI and constructed cytoplasmic molecular markers at the high identity domains of COXI by mutated primer PCR (MP-PCR for short). Then Sybr Green I was used to detect the single amplicon. As a result, we succeeded in getting the cytoplasmic molecular markers, G.M COXI and Z.M COXI, by MP-PCR strategy. They were used to detect the sperm-derived mtDNA in the sexual hybrid embryos (D. rerio female x G. rarus male) before the sphere stage. In the present study, all results demonstrate that MP-PCR approach and Sybr Green I detection are feasible to construct the molecular markers to identify genes that shared high identity
Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices
Background: In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element.
Results: First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples.
Conclusion: Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix
METTL3 regulates WTAP protein homeostasis
The Wilms tumor 1 (WT1)-associated protein (WTAP) is upregulated in many tumors, including, acute myeloid leukemia (AML), where it plays an oncogenic role by interacting with different proteins involved in RNA processing and cell proliferation. In addition, WTAP is also a regulator of the nuclear complex required for the deposition of N6-methyladenosine (m6A) into mRNAs, containing the METTL3 methyltransferase. However, it is not clear if WTAP may have m6A-independent regulatory functions that might contribute to its oncogenic role. Here, we show that both knockdown and overexpression of METTL3 protein results in WTAP protein upregulation, indicating that METTL3 levels are critical for WTAP protein homeostasis. However, we show that WTAP upregulation is not sufficient to promote cell proliferation in the absence of a functional METTL3. Therein, these data indicate that the reported oncogenic function of WTAP is strictly connected to a functional m6A methylation complex
Fluorescent Visualization of In Vitro Mitochondrial DNA Transcription
Mitochondria are important organelles within eukaryotic cells especially for their role in metabolism and ATP production by the oxidative phosphorylation (OXPHOS) pathway. In human cells there are approximately 80 protein subunits that make up the OXPHOS pathway, thirteen of which are encoded by the mitochondrial genome (mtDNA). Mitochondria house all the transcription and translation machinery (i.e., mitochondrial RNA polymerase, mitochondrial ribosome, tRNAs, etc.) required to produce those thirteen mtDNA encoded subunits. In vitro mitochondrial transcription is a method that utilizes recombinantly purified proteins and linear mitochondrial DNA templates to investigate transcription regulation of the organelle. To visualize the products of in vitro transcription, it is still common practice to utilize radioactive nucleotides or staining with ethidium bromide. These conditions can be undesirable due to safety hazards, expense, interference with electrophoresis, and time demands. As an alternative, fluorescent dyes have been developed for DNA and RNA tagging. This work establishes a procedure for post-staining of T7 RNA polymerase in vitro transcription products run via denaturing gel electrophoresis and stained with Gel Red and SYBR Gold dyes. Our current studies focus on applying this procedure to the in vitro mitochondrial transcription assay
Measurement of Epstein-Barr virus DNA load using a novel quantification standard containing two EBV DNA targets and SYBR Green I dye
BACKGROUND Reactivation of Epstein-Barr virus (EBV) infection may cause serious, life-threatening complications in immunocompromised individuals. EBV DNA is often detected in EBV-associated disease states, with viral load believed to be a reflection of virus activity. Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases. EBV DNA loads and viral capsid antigen (VCA) IgG antibody titres were also quantified on a population sample. RESULTS EBV DNA was measurable in ethylenediaminetetraacetic acid (EDTA) whole blood, peripheral blood mononuclear cells (PBMCs), plasma and cerebrospinal fluid (CSF) samples. EBV DNA loads were detectable from 8.0 × 10² to 1.3 × 10⁸ copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10³ to 2.0 × 10⁵ copies/ml in infectious mononucleosis (n = 7), 7.5 × 10⁴ to 1.1 × 10⁵ copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10² to 5.6 × 10³ copies/ml in HIV-infected patients (n = 12), and 2.0 × 10² to 9.1 × 10⁴ copies/ml in the population sample (n = 218). EBNA-1 and BHRF-1 DNA were detected in 11.0% and 21.6% of the population sample respectively. There was a modest correlation between VCA IgG antibody titre and BHRF-1 DNA load (rho = 0.13, p = 0.05) but not EBNA-1 DNA load (rho = 0.11, p = 0.11). CONCLUSION Two sensitive and specific real-time PCR assays using SYBR Green I dye and a single quantification standard containing two EBV DNA targets, were developed for the detection and measurement of EBV DNA load in a variety of clinical samples. These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.The Ausimmune Study is funded by the National Multiple Sclerosis Society of the USA, the National Health & Medical Research Council (Project Grant 316901) and Multiple Sclerosis Research Australia
Recommended from our members
Fluorescent amplification for next generation sequencing (FA-NGS) library preparation.
BACKGROUND:Next generation sequencing (NGS) has become a universal practice in modern molecular biology. As the throughput of sequencing experiments increases, the preparation of conventional multiplexed libraries becomes more labor intensive. Conventional library preparation typically requires quality control (QC) testing for individual libraries such as amplification success evaluation and quantification, none of which occur until the end of the library preparation process. RESULTS:In this study, we address the need for a more streamlined high-throughput NGS workflow by tethering real-time quantitative PCR (qPCR) to conventional workflows to save time and implement single tube and single reagent QC. We modified two distinct library preparation workflows by replacing PCR and quantification with qPCR using SYBR Green I. qPCR enabled individual library quantification for pooling in a single tube without the need for additional reagents. Additionally, a melting curve analysis was implemented as an intermediate QC test to confirm successful amplification. Sequencing analysis showed comparable percent reads for each indexed library, demonstrating that pooling calculations based on qPCR allow for an even representation of sequencing reads. To aid the modified workflow, a software toolkit was developed and used to generate pooling instructions and analyze qPCR and melting curve data. CONCLUSIONS:We successfully applied fluorescent amplification for next generation sequencing (FA-NGS) library preparation to both plasmids and bacterial genomes. As a result of using qPCR for quantification and proceeding directly to library pooling, the modified library preparation workflow has fewer overall steps. Therefore, we speculate that the FA-NGS workflow has less risk of user error. The melting curve analysis provides the necessary QC test to identify and troubleshoot library failures prior to sequencing. While this study demonstrates the value of FA-NGS for plasmid or gDNA libraries, we speculate that its versatility could lead to successful application across other library types
Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR
Two transgenic potato lines, csr2–1 and csr4–8 that contained two different antisense cellulose synthase
(CesA) genes, csr2 and csr4, respectively were crossed. The aim, amongst others, was to investigate the
possibility of generating double transformants to validate a hypothetical presence of the proteins of the
two CesA genes in the same cellulose synthase enzyme complex. SYBR-Green quantitative real-time
reverse transcription polymerase chain reaction (RT-PCR) assays were carried out on four CesA gene
transcripts (CesA1, 2, 3, and 4) in the wild type genetic background, and on the two antisense CesA gene
transcripts (CesA2 and 4) in the progeny resulting from the cross between the two transgenic potato
lines. The quantitative RT-PCR analyses revealed different expression patterns of the two CesA genes. The
CesA2 mRNA was shown to be relatively more abundant than CesA4 mRNA, regardless of the genetic
background, suggesting that the two proteins are not present in the same enzyme complex
Detection of Plasmodium falciparum male and female gametocytes and determination of parasite sex ratio in human endemic populations by novel, cheap and robust RTqPCR assays
The presence of Plasmodium falciparum gametocytes in peripheral blood is essential for human to mosquito parasite transmission. The detection of submicroscopic infections with gametocytes and the estimation of the gametocyte sex ratio are crucial to assess the human host potential ability to infect mosquitoes and transmit malaria parasites
Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.
BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform
- …
