12,369 research outputs found
Electrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes
We theoretically investigate the impact of the electrothermal flow on the
dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The
electrothermal flow is observed to control the motions of semiconducting SWNTs
in a sizeable domain near the electrodes under typical experimental conditions,
therefore helping the dielectrophoretic force to attract semiconducting SWNTs
in a broader range. Moreover, with the increase of the surfactant
concentration, the electrothermal flow is enhanced, and with the change of
frequency, the pattern of the electrothermal flow changes. It is shown that
under some typical experimental conditions of dielectrophoresis separation of
SWNTs, the electrothermal flow is a dominating factor in determining the motion
of SWNTs.Comment: 5 pages, 4 figures, Submitted to PR
Multi-spectroscopic investigation of the structure of single-wall carbon nanotubes
We present a multispectroscopic structural study of various nanotube samples
with different tube diameters. We determine for each sample the mean bundle and
tube diameter as well as the tube diameter distribution. The possibility to
work on SWNT of various structural characteristics opens new opportunities to
correlate the nanotube structure and their physical properties.Comment: Conf\'{e}rence : 8 au 15 mars 200
Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees.
Volatile organic compounds (VOCs) released by plants are closely associated with plant metabolism and can serve as biomarkers for disease diagnosis. Huanglongbing (HLB), also known as citrus greening or yellow shoot disease, is a lethal threat to the multi-billion-dollar citrus industry. Early detection of HLB is vital for removal of susceptible citrus trees and containment of the disease. Gas sensors are applied to monitor the air quality or toxic gases owing to their low-cost fabrication, smooth operation, and possible miniaturization. Here, we report on the development, characterization, and application of electrical biosensor arrays based on single-walled carbon nanotubes (SWNTs) decorated with single-stranded DNA (ssDNA) for the detection of four VOCs-ethylhexanol, linalool, tetradecene, and phenylacetaldehyde-that serve as secondary biomarkers for detection of infected citrus trees during the asymptomatic stage. SWNTs were noncovalently functionalized with ssDNA using π-π interaction between the nucleotide and sidewall of SWNTs. The resulting ssDNA-SWNT hybrid structure and device properties were investigated using Raman spectroscopy, ultraviolet (UV) spectroscopy, and electrical measurements. To monitor changes in the four VOCs, gas biosensor arrays consisting of bare SWNTs before and after being decorated with different ssDNA were employed to determine the different concentrations of the four VOCs. The data was processed using principal component analysis (PCA) and neural net fitting (NNF)
Threading Through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers
In this work we study the reinforcement of polymers by mechanically
interlocked derivatives of single-walled carbon nanotubes (SWNTs). We compare
the mechanical properties of fibers made of polymers and of composites with
pristine single-walled carbon nanotubes (SWNTs), mechanically interlocked
derivatives of SWNTs (MINTs) and the corresponding supramolecular models.
Improvements of both Young's modulus and tensile strength of up to 200 % were
observed for the polystyrene-MINTs samples with an optimized loading of just
0.01 wt.%, while the supramolecular models with identical chemical composition
and loading showed negligible or even detrimental influence. This behavior is
found for three different types of SWNTs and two types of macrocycles.
Molecular dynamics simulations show that the polymer adopts an elongated
conformation parallel to the SWNT when interacting with MINT fillers,
irrespective of the macrocycle chemical nature, whereas a more globular
structure is taken upon facing with either pristine SWNTs or supramolecular
models. The MINT composite architecture thus leads to a more efficient
exploitation of the axial properties of the SWNTs and of the polymer chain at
the interface, in agreement with experimental results. Our findings demonstrate
that the mechanical bond imparts distinctive advantageous properties to SWNT
derivatives as polymer fillers.Comment: 39 pages, 19 figure
Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors
Substantial progress on field effect transistors "FETs" consisting of
semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces
of metallic nanotubes and impurities is reported. Nearly perfect removal of
metallic nanotubes is confirmed by optical absorption, Raman measurements, and
electrical measurements. This outstanding result was made possible in
particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT
powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs
processable solutions were applied to realize FET, embodying randomly or
preferentially oriented nanotube networks prepared by spin coating or
dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air
with very promising characteristics. The on-off current ratio is 10^5, the
on-current level is around 10 A, and the estimated hole mobility is larger
than 2 cm2 / V s
- …
