4,123 research outputs found

    Enhanced Tunnelling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene

    Full text link
    Transparent and conductive films (TCFs) are of great technological importance. The high transmittance, electrical conductivity and mechanical strength make single-walled carbon nanotubes (SWCNTs) a good candidate for their raw material. Despite the ballistic transport in individual SWCNTs, however, the electrical conductivity of their networks is limited by low efficiency of charge tunneling between the tube elements. Here, we demonstrate that the nanotube network sheet resistance at high optical transmittance is decreased by more than 50% when fabricated on graphene and thus provides a comparable improvement as widely adopted gold chloride (AuCl3\mathrm{AuCl_3}) doping. However, while Raman spectroscopy reveals substantial changes in spectral features of doped nanotubes, no similar effect is observed in presence of graphene. Instead, temperature dependent transport measurements indicate that graphene substrate reduces the tunneling barrier heights while its parallel conductivity contribution is almost negligible. Finally, we show that combining the graphene substrate and AuCl3\mathrm{AuCl_3} doping, the SWCNT thin films can exhibit sheet resistance as low as 36 Ω\Omega/sq. at 90% transmittance.Comment: 21 pages, 6 figure

    ????????? ??????????????? ?????? ??????????????? ?????? ???????????????

    Get PDF
    Department of Energy Engineering (Battery Science and Technology)The continuous throng in demand for high energy density rechargeable batteries innovatively drives technological development in cell design as well as electrochemically active materials. In that perspective metal-free batteries consisting of a flowing seawater as a cathode active material were introduced. However, the electrochemical performance of the seawater battery was restrained by NASICON (Na3Zr2Si2PO12) ceramic solid electrolyte. Here, we demonstrate a new class of fibrous nanomat hard-carbon (FNHC) anode/1D (one-dimensional) bucky paper (1DBP) cathode hybrid electrode architecture in seawater battery based on 1D building block-interweaved hetero-nanomat frameworks. Differently from conventional slurry-cast electrodes, exquisitely designed hybrid hetero-nanomat electrodes are fabricated through concurrent dual electrospraying and electrospinning for the anode, vacuum-assisted infiltration for the cathode. HC nanoparticles are closely embedded in the spatially reinforced polymeric nanofiber/CNT hetero-nanomat skeletons that play a crucial role in constructing 3D-bicontinuous ion/electron transport pathways and allow to eliminate heavy metallic aluminum foil current collectors. Eventually the FNHC/1DBP seawater full cell, driven by aforementioned physicochemical uniqueness, shows exceptional improvement in electrochemical performance (Energy density = 693 Wh kg-1), (Power density = 3341 W kg-1) removing strong stereotype of ceramic solid electrolyte, which beyond those achievable with innovative next generation battery technologies.ope

    Topological transitions in carbon nanotube networks via nanoscale confinement

    Full text link
    Efforts aimed at large-scale integration of nanoelectronic devices that exploit the superior electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) remain limited by the difficulties associated with manipulation and packaging of individual SWNTs. Alternative approaches based on ultra-thin carbon nanotube networks (CNNs) have enjoyed success of late with the realization of several scalable device applications. However, precise control over the network electronic transport is challenging due to i) an often uncontrollable interplay between network coverage and its topology and ii) the inherent electrical heterogeneity of the constituent SWNTs. In this letter, we use template-assisted fluidic assembly of SWCNT networks to explore the effect of geometric confinement on the network topology. Heterogeneous SWCNT networks dip-coated onto sub-micron wide ultra-thin polymer channels exhibit a topology that becomes increasingly aligned with decreasing channel width and thickness. Experimental scale coarse-grained computations of interacting SWCNTs show that the effect is a reflection of an aligned topology that is no longer dependent on the network density, which in turn emerges as a robust knob that can induce semiconductor-to-metallic transitions in the network response. Our study demonstrates the effectiveness of directed assembly on channels with varying degrees of confinement as a simple tool to tailor the conductance of the otherwise heterogeneous network, opening up the possibility of robust large-scale CNN-based devices.Comment: 4 pages, 3 figure

    Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration

    Get PDF
    Carbon nanotubes (CNTs) make an ideal one-dimensional (1D) material platform for the exploration of exotic physical phenomena under extremely strong quantum confinement. The 1D character of electrons, phonons and excitons in individual CNTs features extraordinary electronic, thermal and optical properties. Since the first discovery, they have been continuing to attract interest in various disciplines, including chemistry, materials science, physics, and engineering. However, the macroscopic manifestation of such properties is still limited, despite significant efforts for decades. Recently, a controlled vacuum filtration method has been developed for the preparation of wafer-scale films of crystalline chirality-enriched CNTs, and such films immediately enable exciting new fundamental studies and applications. In this review, we will first discuss the controlled vacuum filtration technique, and then summarize recent discoveries in optical spectroscopy studies and optoelectronic device applications using films prepared by this technique.Comment: 24 pages, 14 figure

    Exploiting the Hierarchical Morphology of Single-Walled and Multi-Walled Carbon Nanotube Films for Highly Hydrophobic Coatings

    Get PDF
    Self-assembled hierarchical solid surfaces are very interesting for wetting phenomena, as observed in a variety of natural and artificial surfaces. Here, we report single-walled (SWCNT) and multi-walled carbon nanotube (MWCNT) thin films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, that was deposited at room temperature by a dry-transfer printing method on glass. Furthermore, the investigation of carbon nanotube films through scanning electron microscopy (SEM) reveals the multi-scale hierarchical morphology of the self-assembled carbon nanotube random networks. Moreover, contact angle measurements show that hierarchical SWCNT/MWCNT composite surfaces exhibit a higher hydrophobicity (contact angles of up to 137{\deg}) than bare SWCNT (110{\deg}) and MWCNT (97{\deg}) coatings, thereby confirming the enhancement produced by the surface hierarchical morphology.Comment: 7 pages, 5 figures, This article is part of the Thematic Series "Self-assembly of nanostructures and nanomaterials

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric.

    Get PDF
    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm(2) V(-1) s(-1), on/off ratio of 10(3)-10(4), switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays
    corecore