103,216 research outputs found
Cerebral small vessel disease burden is associated with poststroke depressive symptoms: A 15-month prospective study
Objective: All types of cerebral small vessel disease (SVD) markers including lacune, white matter hyperintensities (WMH), cerebral microbleeds, and perivascular spaces were found to be associated with poststroke depressive symptoms (PDS). This study explored whether the combination of the four markers constituting an overall SVD burden was associated with PDS.
Methods: A cohort of 563 patients with acute ischemic stroke were followed over a 15-month period after the index stroke. A score of _7 on the 15-item Geriatric Depression Scale was defined as clinically significant PDS. Scores of the four SVD markers ascertained on magnetic resonance imaging were summed up to represent total SVD burden. The association between SVD burden and PDS was assessed with generalized estimating equation models.
Results: The study sample had a mean age of 67.0 _ 10.2 years and mild-moderate stroke [National Institutes of Health Stroke Scale score: 3, interquartile, 1–5]. PDS were found in 18.3%, 11.6%, and 12.3% of the sample at 3, 9, and 15 months after stroke, respectively. After adjusting for demographic characteristics, vascular risk factors, social support, stroke severity, physical and cognitive functions, and size and locations of stroke, the SVD burden was associated with an increased risk of PDS [odds ratio = 1.30; 95% confidence interval = 1.07–1.58; p = 0.010]. Other significant predictors of PDS were time of assessment, female sex, smoking, number of acute infarcts, functional independence, and social support.
Conclusion: SVD burden was associated with PDS examined over a 15-month follow-up in patients with mild to moderate acute ischemic stroke
Full-Rate, Full-Diversity Adaptive Space Time Block Coding for Transmission over Rayleigh Fading Channels
A full-rate, full-diversity Adaptive Space Time Block Coding (ASTBC) scheme based on Singular Value Decomposition (SVD) is proposed for transmission over Rayleigh fading channels. The ASTBC-SVD scheme advocated is capable of providing both full-rate and full-diversity for any number of transmit antennas, Nt, provided that the number of receive antennas, Nr, equals to Nt. Furthermore, the ASTBC-SVD scheme may achieve an additional coding gain due to its higher product distance with the aid of the block code employed. In conjunction with SVD, the “water-filling” approach can be employed for adaptively distributing the transmitted power to the various antennas transmit according to the channel conditions, in order to further enhance the attainable performance. Since a codeword constituted by Nt symbols is transmitted in a single time slot by mapping the Nt symbols to the Nt transmit antennas in the spatial domain, the attainable performance of the ASTBC-SVD scheme does not degrade, when the channel impulse response values vary from one time slot to the next. Hence, the proposed ASTBC-SVD scheme is attractive in the context of both uncorrelated and correlated Rayleigh fading channels. The performance of the proposed scheme was evaluated, when communicating over uncorrelated Rayleigh fading channels. Explicitly, an Eb/N0 gain of 2.5 dB was achieved by the proposed ASTBC-SVD scheme against Alamouti’s scheme [1], when employing Nt = Nr = 2 in conjunction with 8PSK
- …
