16,865 research outputs found
A Neural Network Model for the Development of Simple and Complex Cell Receptive Fields Within Cortical Maps of Orientation and Ocular Dominance
Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to perceptual processes such as texture segregation and perceptual grouping.Air Force Office of Scientific Research (F49620-92-J-0334); British Petroleum (BP 89A-1204); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409
Design principles of columnar organization in visual cortex
Visual space is represented by cortical cells in an orderly manner. Only little variation in the cell behavior is found with changing depth below the cortical surface, that is, all cells in a column with axis perpendicular to the cortical plane have approximately the same properties (Hubel and Wiesel 1962, 1963, 1968). Therefore, the multiple features of the visual space (e.g., position in visual space, preferred orientation, and orientation tuning strength) are mapped on a two-dimensional space, the cortical plane. Such a dimension reduction leads to complex maps (Durbin and Mitchison 1990) that so far have evaded an intuitive understanding. Analyzing optical imaging data (Blasdel 1992a, b; Blasdel and Salama 1986; Grinvald et al. 1986) using a theoretical approach we will show that the most salient features of these maps can be understood from a few basic design principles: local correlation, modularity, isotropy, and homogeneity. These principles can be defined in a mathematically exact sense in the Fourier domain by a rather simple annulus-like spectral structure. Many of the models that have been developed to explain the mapping of the preferred orientations (Cooper et al. 1979; Legendy 1978; Linsker 1986a, b; Miller 1992; Nass and Cooper 1975; Obermayer et al. 1990, 1992; Soodak 1987; Swindale 1982, 1985, 1992; von der Malsburg 1973; von der Malsburg and Cowan 1982) are quite successful in generating maps that are close to experimental maps. We suggest that this success is due to these principles, which are common properties of the models and of biological maps
Binding of Object Representations by Synchronous Cortical Dynamics Explains Temporal Order and Spatial Pooling Data
A key problem in cognitive science concerns how the brain binds together parts of an object into a coherent visual object representation. One difficulty that this binding process needs to overcome is that different parts of an object may be processed by the brain at different rates and may thus become desynchronized. Perceptual framing is a mechanism that resynchronizes cortical activities corresponding to the same retinal object. A neural network model based on cooperation between oscillators via feedback from a subsequent processing stage is presented that is able to rapidly resynchronize desynchronized featural activities. Model properties help to explain perceptual framing data, including psychophysical data about temporal order judgments. These cooperative model interactions also simulate data concerning the reduction of threshold contrast as a function of stimulus length. The model hereby provides a unified explanation of temporal order and threshold contrast data as manifestations of a cortical binding process that can rapidly resynchronize image parts which belong together in visual object representations.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-92-J-0334, F49620-92-J-0499); Office of Naval Research (N00014-92- J-4015, N00014-91-J-4100
Functional Organization of Visual Cortex in the Owl Monkey
In this study, we compared the organization of orientation preference in visual areas V1, V2, and V3. Within these visual areas, we also
quantified the relationship between orientation preference and cytochrome oxidase (CO) staining patterns. V1 maps of orientation
preference contained both pinwheels and linear zones. The location of CO blobs did not relate in a systematic way to maps of orientation;
although, as in other primates, there were approximately twice as many pinwheels as CO blobs. V2 contained bands of high and low
orientation selectivity. The bands of high orientation selectivity were organized into pinwheels and linear zones, but iso-orientation
domains were twice as large as those in V1. Quantitative comparisons between bands containing high or low orientation selectivity and
CO dark and light bands suggested that at least four functional compartments exist in V2, CO dense bands with either high or low
orientation selectivity, and CO light bands with either high or low selectivity. We also demonstrated that two functional compartments
exist in V3, with zones of high orientation selectivity corresponding to CO dense areas and zones of low orientation selectivity corresponding
to CO pale areas. Together with previous findings, these results suggest that the modular organization of V1 is similar across
primates and indeed across most mammals. V2 organization in owl monkeys also appears similar to that of other simians but different
from that of prosimians and other mammals. Finally, V3 of owl monkeys shows a compartmental organization for orientation selectivity
that remains to be demonstrated in other primates
Coordinated optimization of visual cortical maps (II) Numerical studies
It is an attractive hypothesis that the spatial structure of visual cortical
architecture can be explained by the coordinated optimization of multiple
visual cortical maps representing orientation preference (OP), ocular dominance
(OD), spatial frequency, or direction preference. In part (I) of this study we
defined a class of analytically tractable coordinated optimization models and
solved representative examples in which a spatially complex organization of the
orientation preference map is induced by inter-map interactions. We found that
attractor solutions near symmetry breaking threshold predict a highly ordered
map layout and require a substantial OD bias for OP pinwheel stabilization.
Here we examine in numerical simulations whether such models exhibit
biologically more realistic spatially irregular solutions at a finite distance
from threshold and when transients towards attractor states are considered. We
also examine whether model behavior qualitatively changes when the spatial
periodicities of the two maps are detuned and when considering more than 2
feature dimensions. Our numerical results support the view that neither minimal
energy states nor intermediate transient states of our coordinated optimization
models successfully explain the spatially irregular architecture of the visual
cortex. We discuss several alternative scenarios and additional factors that
may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1102.335
A Neural Model of How the Cortical Subplate Coordinates the Laminar Development of Orientation and Ocular Dominance Maps
Air Force Office of Scientific Research (F49620-98-1-0108, F49620-0 1-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IIS-97-20333); Office of Naval Research (N00014-01-1-0624
Linking the Laminar Circuits of Visual Cortex to Visual Perception
A detailed neural model is being developed of how the laminar circuits of visual cortical areas V1 and V2 implement context-sensitive binding processes such as perceptual grouping and attention, and develop and learn in a stable way. The model clarifies how preattentive and attentive perceptual mechanisms are linked within these laminar circuits, notably how bottom-up, top-down, and horizontal cortical connections interact. Laminar circuits allow the responses of visual cortical neurons to be influenced, not only by the stimuli within their classical receptive fields, but also by stimuli in the extra-classical surround. Such context-sensitive visual processing can greatly enhance the analysis of visual scenes, especially those containing targets that are low contrast, partially occluded, or crowded by distractors. Attentional enhancement can selectively propagate along groupings of both real and illusory contours, thereby showing how attention can selectively enhance object representations. Model mechanisms clarify how intracortical and intercortical feedback help to stabilize cortical development and learning. Although feedback plays a key role, fast feedforward processing is possible in response to unambiguous information.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657
Neuron analysis of visual perception
The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed
A Simple Cell Model with Multiple Spatial Frequency Selectivity and Linear/Non-Linear Response Properties
A model is described for cortical simple cells. Simple cells are selective for local contrast polarity, signaling light-dark and dark-light transitions. The proposed new architecture exhibits both linear and non-linear properties of simple cells. Linear responses are obtained by integration of the input stimulus within subfields of the cells, and by combinations of them. Non-linear behavior can be seen in the selectivity for certain features that can be characterized by the spatial arrangement of activations generated by initial on- and off-cells (center-surround). The new model also exhibits spatial frequency selectivity with the generation of multi-scale properties being based on a single-scale band-pass input that is generated by the initial (retinal) center-surround processing stage.German BMFT grant (413-5839-01 IN 101 C/1); CNPq and NUTES/UFRJ, Brazi
- …
