702,397 research outputs found
Moist Convection and the Thermal Stratification of the Extratropical Troposphere
Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates
Stratification requirements for seed dormancy alleviation in a wetland weed.
Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence
The language of Stratified Sets is confluent and strongly normalising
We study the properties of the language of Stratified Sets (first-order logic
with and a stratification condition) as used in TST, TZT, and (with
stratifiability instead of stratification) in Quine's NF. We find that the
syntax forms a nominal algebra for substitution and that stratification and
stratifiability imply confluence and strong normalisation under rewrites
corresponding naturally to -conversion.Comment: arXiv admin note: text overlap with arXiv:1406.406
Experimental study of temperature stratification in an integrated collector-storage solar water heater with two horizontal tanks
The effect of tank-interconnection geometry on temperature stratification in an integrated collector-storage solar water (ICSSW) heater with two horizontal cylindrical tanks has been studied. The tanks were parallel to each other, and separated horizontally and vertically, with the lower tank fitted directly below a glass cover, and half of the upper tank insulated. In addition, a truncated parabolic concentrator was fitted below the tanks, with its focal line along the axis of the upper tank. The heater was tested outdoors with the two tanks connected in parallel (P), and S1-and S2-series configurations, with and without hot water draw-off. Water temperature was monitored during solar collection and hot water draw-offs. For the heat charging process, it was found that only the lower tank exhibited temperature stratification in the P-and S1-tank modes of operation. There was satisfactory temperature stratification in both tanks in the S2-tank configuration. For the hot water draining process, the P-tank configuration exhibited some degree of stratification in both tanks. A significant loss of stratification was observed in the lower tank, with the upper tank exhibiting practical stratification, when the system was operated in the S1-tank mode. The S2-tank interconnection maintained a satisfactory degree of temperature stratification in both tanks. So, the S2-tank mode of operation was most effective in promoting practical temperature stratification in both tanks during solar collection and hot water draw-offs. Other results are presented and discussed in this paper
Endogenous post-stratification in surveys: classifying with a sample-fitted model
Post-stratification is frequently used to improve the precision of survey
estimators when categorical auxiliary information is available from sources
outside the survey. In natural resource surveys, such information is often
obtained from remote sensing data, classified into categories and displayed as
pixel-based maps. These maps may be constructed based on classification models
fitted to the sample data. Post-stratification of the sample data based on
categories derived from the sample data (``endogenous post-stratification'')
violates the standard post-stratification assumptions that observations are
classified without error into post-strata, and post-stratum population counts
are known. Properties of the endogenous post-stratification estimator are
derived for the case of a sample-fitted generalized linear model, from which
the post-strata are constructed by dividing the range of the model predictions
into predetermined intervals. Design consistency of the endogenous
post-stratification estimator is established under mild conditions. Under a
superpopulation model, consistency and asymptotic normality of the endogenous
post-stratification estimator are established, showing that it has the same
asymptotic variance as the traditional post-stratified estimator with fixed
strata. Simulation experiments demonstrate that the practical effect of first
fitting a model to the survey data before post-stratifying is small, even for
relatively small sample sizes.Comment: Published in at http://dx.doi.org/10.1214/009053607000000703 the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Investigation of exit-velocity stratification effects on jets in a crossflow (STRJET)
Program determines flow field about jets with velocity stratification exhausting into crossflow. Jets with three different types of exit-velocity stratification have been considered: (a) jets with relatively high-velocity core, (b) jets with relatively low-velocity core, and (c) jets originating from vaned nozzle
- …
