251,734 research outputs found

    Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    Get PDF
    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS

    High-dose therapy and autologous stem cell transplantation in patients with POEMS syndrome: a retrospective study of the Plasma Cell Disorder sub-committee of the Chronic Malignancy Working Party of the European Society for Blood & Marrow Transplantation

    Get PDF
    POEMS syndrome is a rare para-neoplastic syndrome secondary to a plasma cell dyscrasia. Effective treatment can control the diseaserelated symptom complex. We describe the clinical outcome of autologous stem cell transplantation for patients with POEMS syndrome, determining the impact of patient- and disease-specific factors on prognosis. One hundred and twenty-seven patients underwent an autologous stem cell transplantation at 1997-2010 with a median age of 50 years (range 26-69 years). Median time from diagnosis to autologous stem cell transplantation was 7.5 months with 32% of patients receiving an autologous stem cell transplantation more than 12 months from diagnosis. Engraftment was seen in 97% patients and engraftment syndrome was documented in 23% of autologous stem cell transplantation recipients. Hematologic response was characterized as complete response in 48.5%, partial response in 20.8%, less than partial response in 30.7%. With a median follow up of 48 months (95%CI: 38.3, 58.6), 90% of patients are alive and 16.5% of patients have progressed. The 1-year non-relapse mortality was 3.3%. The 3-year probabilities of progression-free survival and overall survival are 84% and 94%, respectively, with 5-year probabilities of progression-free survival and overall survival of 74% and 89%. In a cohort of graft recipients, detailed organ-specific symptom response demonstrated clear symptom benefit after autologous stem cell transplantation especially in relation to neurological symptom control. The data analysed in this study demonstrate the clinical utility of autologous stem cell transplantation for patients with POEMS syndrome

    Impact of IFN lambda 3/4 single nucleotide polymorphisms on the cytomegalovirus reactivation in autologous stem cell transplant patients

    Get PDF
    Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNΔ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ΔG/ΔG), 35% (CC-TT/TT) and 29.2% (CT-TT/ΔG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ΔG/ΔG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ΔG (40%) patients. Our data suggest a negative role of TT-ΔG/ΔG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation

    Potential for Stem Cells Therapy in Alzheimer’s Disease: Do Neurotrophic Factors Play Critical Role?

    Get PDF
    Alzheimer’s disease (AD) is one of the most common causes of dementia. Despite several decades of research in AD, there is no standard disease- modifying therapy available and currentlyapproved drugs provide only symptomatic relief. Stem cells hold immense potential to regenerate damaged tissues and are currently tested in some brain-related disorders, such as AD, amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD). We review stem cell transplantation studies using preclinical and clinical tools. We describe different sources of stem cells used in various animal models and explaining the putative molecular mechanisms that can rescue neurodegenerative disorders. The clinical studies suggest safety, efficacy and translational potential of stem cell therapy. The therapeutic outcome of stem cell transplantation has been promising in many studies, but no unifying hypothesis can convincingly explain the underlying mechanism. Some studies have reported paracrine effects exerted by these stem cells via the release of neurotrophic factors, while other studies describe the immunomodulatory effects exerted by the transplanted cells. There are also reports which indicate that stem cell transplantation might result in endogenous cell proliferation or replacement of diseased cells. In animal models of AD, stem cell transplantation is also believed to increase expression of synaptic proteins

    Limbal stem cell transplantation: clinical results, limits, and perspectives

    Get PDF
    Limbal stem cell deficiency (LSCD) is a clinical condition characterized by damage of cornea limbal stem cells, which results in an impairment of corneal epithelium turnover and in an invasion of the cornea by the conjunctival epithelium. In these patients, the conjunctivalization of the cornea is associated with visual impairment and cornea transplantation has poor prognosis for recurrence of the conjunctivalization. Current treatments of LSCD are aimed at replacing the damaged corneal stem cells in order to restore a healthy corneal epithelium. The autotransplantation of limbal tissue from the healthy, fellow eye is effective in unilateral LSCD but leads to depauperation of the stem cell reservoir. In the last decades, novel techniques such as cultivated limbal epithelial transplantation (CLET) have been proposed in order to reduce the damage of the healthy fellow eye. Clinical and experimental evidence showed that CLET is effective in inducing long-term regeneration of a healthy corneal epithelium in patients with LSCD with a success rate of 70%-80%. Current limitations for the treatment of LSCD are represented by the lack of a marker able to unequivocally identify limbal stem cells and the treatment of total, bilateral LSCD which requires other sources of stem cells for ocular surface reconstruction

    Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue.

    Get PDF
    Retinal organoid technology enables generation of an inexhaustible supply of three-dimensional retinal tissue from human pluripotent stem cells (hPSCs) for regenerative medicine applications. The high similarity of organoid-derived retinal tissue and transplantable human fetal retina provides an opportunity for evaluating and modeling retinal tissue replacement strategies in relevant animal models in the effort to develop a functional retinal patch to restore vision in patients with profound blindness caused by retinal degeneration. Because of the complexity of this very promising approach requiring specialized stem cell and grafting techniques, the tasks of retinal tissue derivation and transplantation are frequently split between geographically distant teams. Delivery of delicate and perishable neural tissue such as retina to the surgical sites requires a reliable shipping protocol and also controlled temperature conditions with damage-reporting mechanisms in place to prevent transplantation of tissue damaged in transit into expensive animal models. We have developed a robust overnight tissue shipping protocol providing reliable temperature control, live monitoring of the shipment conditions and physical location of the package, and damage reporting at the time of delivery. This allows for shipping of viable (transplantation-competent) hPSC-derived retinal tissue over large distances, thus enabling stem cell and surgical teams from different parts of the country to work together and maximize successful engraftment of organoid-derived retinal tissue. Although this protocol was developed for preclinical in vivo studies in animal models, it is potentially translatable for clinical transplantation in the future and will contribute to developing clinical protocols for restoring vision in patients with retinal degeneration

    Cholangiocytes: Cell transplantation

    Get PDF
    Background:Due to significant limitations to the access to orthotropic liver transplantation, cell therapies forliver diseases have gained large interest worldwide.Scope of review:To revise current literature dealing with cell therapy for liver diseases. We discussed the ad-vantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying thepotential benefits of transplantation of human biliary tree stem cells (hBTSCs).Major conclusions:Transplantation of adult hepatocytes showed transient benefits but requires immune-sup-pression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hemato-poietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes butrather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adultliver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liverdisease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markersin (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. Inthefirst cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse eventbut significant benefits.General significance:The biliary tree stem cell could represent the ideal cell source for the cell therapy of liverdiseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by JesusBanales, Marco Marzioni, Nicholas LaRusso and Peter Jansen
    corecore