1,223,534 research outputs found

    The fractional integrated bi- parameter smooth transition autoregressive model

    Get PDF
    This paper introduces the fractionally integrated Bi-parameter smooth transition autoregressive model (FI-BSTAR model) as an extension of BSTAR model proposed by Siliverstovs (2005) and the fractionally integrated STAR model (FI-STAR model) proposed by van Dijk et al. (2002). Our FI-BSTAR model is able to simultaneously describe persistence and asymmetric smooth structural change in time series. An empirical application using monthly growth rates of the American producer price index is provided.Long Memory, Nonlinearity, Asymmetry, STAR models.

    Monolithic or hierarchical star formation? A new statistical analysis

    Full text link
    We consider an analytic model of cosmic star formation which incorporates supernova feedback, gas accretion and enriched outflows, reproducing the history of cosmic star formation, metallicity, supernovae type II rates and the fraction of baryons allocated to structures. We present a new statistical treatment of the available observational data on the star formation rate and metallicity that accounts for the presence of possible systematics. We then employ a Bayesian Markov Chain Monte Carlo method to compare the predictions of our model with observations and derive constraints on the 7 free parameters of the model. We find that the dust correction scheme one chooses to adopt for the star formation data is critical in determining which scenario is favoured between a hierarchical star formation model, where star formation is prolonged by accretion, infall and merging, and a monolithic scenario, where star formation is rapid and efficient. We distinguish between these modes by defining a characteristic minimum mass, M > 10^{11} M_solar, in our fiducial model, for early type galaxies where star formation occurs efficiently. Our results indicate that the hierarchical star formation model can achieve better agreement with the data, but that this requires a high efficiency of supernova-driven outflows. In a monolithic model, our analysis points to the need for a mechanism that drives metal-poor winds, perhaps in the form of supermassive black hole-induced outflows. Furthermore, the relative absence of star formation beyond z ~ 5 in the monolithic scenario requires an alternative mechanism to dwarf galaxies for reionizing the universe at z ~ 11, as required by observations of the microwave background. While the monolithic scenario is less favoured in terms of its quality-of-fit, it cannot yet be excluded.Comment: Expanded discussion on the role of mergers and on reionization in the monolithic scenario, refs added, main results unchanged. Matches version to appear in MNRA

    Reconciling Mass Functions with the Star-Forming Main Sequence Via Mergers

    Get PDF
    We combine star formation along the `main sequence', quiescence, and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally-independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.Comment: MNRAS, in pres

    The extended, relativistic hyperon star model

    Get PDF
    In this paper an equation of state of neutron star matter which includes strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been obtained. We concentrate on the effects of the isospin dependence of the equation of state constructing for the appropriate choices of parameters the hyperons star model. Numerous neutron star models show that the appearance of hyperons is connected with the increasing density in neutron star interiors. Various studies have indicated that the inclusion of delta meson mainly affects the symmetry energy and through this the chemical composition of a neutron star. As the effective nucleon mass contributes to hadron chemical potentials it alters the chemical composition of the star. In the result the obtained model of the star not only excludes large population of hadrons but also does not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure

    Indicators of Mass in Spherical Stellar Atmospheres

    Full text link
    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity (LL_\star), mass (MM_\star) and radius (RR_\star), and observations can now determine directly LL_\star and RR_\star. We computed spherical model atmospheres for red giants and for red supergiants holding LL_\star and RR_\star constant at characteristic values for each type of star but varying MM_\star, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the star's mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log10(g)\log_{10} (g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine the star's mass from currently achievable spectroscopy. The surface-brightness variations with mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.Comment: 24 pages, 9 figure

    The Protostellar Luminosity Function

    Full text link
    The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function (PMF) in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. As in McKee & Offner (2010), we consider three main accretion models: the Isothermal Sphere model, the Turbulent Core model, and an approximation of the Competitive Accretion model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star forming regions and find that models with an approximately constant accretion time, such as the Turbulent Core and Competitive Accretion models, appear to agree better with observation than those with a constant accretion rate, such as the Isothermal Sphere model. We show that observations of the mean protostellar luminosity in these nearby regions of low-mass star formation suggest a mean star formation time of 0.3±\pm0.1 Myr. Such a timescale, together with some accretion that occurs non-radiatively and some that occurs in high-accretion, episodic bursts, resolves the classical "luminosity problem" in low-mass star formation, in which observed protostellar luminosities are significantly less than predicted. An accelerating star formation rate is one possible way of reconciling the observed star formation time and mean luminosity.Comment: 22 pages, 9 figures, accepted to Ap

    Gravitational instability and star formation in disk galaxies

    Get PDF
    We present a general star formation law where star formation rate depends upon efficiency α\alpha, timescale τ\tau of star formation, gas component σg\sigma_{g} of surface mass density and a real exponent nn. A given exponent nn determines τ\tau which however yields the corresponding star formation rate. Current nominal Schmidt exponent nsn_{s} for our model is 2<ns<32<n_{s}<3. Based on a gravitational instability parameter QAQ_{A} and another dimensionless parameter fP(P/Gσc2)1/2f_{P}\equiv (P/G\sigma_{c}^{2})^{1/2}, where PP = pressure, σc\sigma_{c} = column density of molecular clouds, we suggest a general equation for star formation rate which depends upon relative competence of the two parameters for various physical circumstances. We find that QAQ_{A} emerges to be a better parameter for star formation scenario than Toomre Q-parameter. Star formation rate in the solar neighbourhood is found to be in good agreement with values inferred from previous studies. Under closed box approximation model, we obtain a relation between metallicity of gas and the efficiency of star formation. Our model calculations of metallicity in the solar neighbourhood agree with earlier estimates. We conclude that metallicity dispersion for stars of same age may result due to a change in efficiency through which different sample stars were processed. For no significant change of metallicity with age, we suggest that all sample stars were born with almost similar efficiency.Comment: 10 pages, 3 figures, submitted to MNRA
    corecore