34,255 research outputs found
Merger as Intermittent Accretion
The Self-Similar Secondary Infall Model (SSIM) is modified to simulate a
merger event. The model encompass spherical versions of tidal stripping and
dynamical friction that agrees with the Syer & White merger paradigm's
behaviour. The SSIM shows robustness in absorbing even comparable mass
perturbations and returning to its original state. It suggests the approach to
be invertible and allows to consider accretion as smooth mass inflow merging
and mergers as intermittent mass inflow accretion.Comment: letter accepted by A&A 29/09/08, 4 pages, colour figure
Learning to Generate Images with Perceptual Similarity Metrics
Deep networks are increasingly being applied to problems involving image
synthesis, e.g., generating images from textual descriptions and reconstructing
an input image from a compact representation. Supervised training of
image-synthesis networks typically uses a pixel-wise loss (PL) to indicate the
mismatch between a generated image and its corresponding target image. We
propose instead to use a loss function that is better calibrated to human
perceptual judgments of image quality: the multiscale structural-similarity
score (MS-SSIM). Because MS-SSIM is differentiable, it is easily incorporated
into gradient-descent learning. We compare the consequences of using MS-SSIM
versus PL loss on training deterministic and stochastic autoencoders. For three
different architectures, we collected human judgments of the quality of image
reconstructions. Observers reliably prefer images synthesized by
MS-SSIM-optimized models over those synthesized by PL-optimized models, for two
distinct PL measures ( and distances). We also explore the
effect of training objective on image encoding and analyze conditions under
which perceptually-optimized representations yield better performance on image
classification. Finally, we demonstrate the superiority of
perceptually-optimized networks for super-resolution imaging. Just as computer
vision has advanced through the use of convolutional architectures that mimic
the structure of the mammalian visual system, we argue that significant
additional advances can be made in modeling images through the use of training
objectives that are well aligned to characteristics of human perception
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Convolutional autoencoders have emerged as popular methods for unsupervised
defect segmentation on image data. Most commonly, this task is performed by
thresholding a pixel-wise reconstruction error based on an distance.
This procedure, however, leads to large residuals whenever the reconstruction
encompasses slight localization inaccuracies around edges. It also fails to
reveal defective regions that have been visually altered when intensity values
stay roughly consistent. We show that these problems prevent these approaches
from being applied to complex real-world scenarios and that it cannot be easily
avoided by employing more elaborate architectures such as variational or
feature matching autoencoders. We propose to use a perceptual loss function
based on structural similarity which examines inter-dependencies between local
image regions, taking into account luminance, contrast and structural
information, instead of simply comparing single pixel values. It achieves
significant performance gains on a challenging real-world dataset of
nanofibrous materials and a novel dataset of two woven fabrics over the state
of the art approaches for unsupervised defect segmentation that use pixel-wise
reconstruction error metrics
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
We propose a method for lossy image compression based on recurrent,
convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000,
and JPEG as measured by MS-SSIM. We introduce three improvements over previous
research that lead to this state-of-the-art result. First, we show that
training with a pixel-wise loss weighted by SSIM increases reconstruction
quality according to several metrics. Second, we modify the recurrent
architecture to improve spatial diffusion, which allows the network to more
effectively capture and propagate image information through the network's
hidden state. Finally, in addition to lossless entropy coding, we use a
spatially adaptive bit allocation algorithm to more efficiently use the limited
number of bits to encode visually complex image regions. We evaluate our method
on the Kodak and Tecnick image sets and compare against standard codecs as well
recently published methods based on deep neural networks
- …
