42,181 research outputs found
Sex determining region Y-box 2 (SOX2) amplification is an independent indicator of disease recurrence in sinonasal cancer.
The transcription factor SOX2 (3q26.3-q27) is an embryonic stem cell factor contributing to the induction of pluripotency in terminally differentiated somatic cells. Recently, amplification of the SOX2 gene locus has been described in squamous cell carcinoma (SCC) of different organ sites. Aim of this study was to investigate amplification and expression status of SOX2 in sinonasal carcinomas and to correlate the results with clinico-pathological data.
A total of 119 primary tumor samples from the sinonasal region were assessed by fluorescence in-situ hybridization and immunohistochemistry for SOX2 gene amplification and protein expression, respectively. Of these, 59 were SSCs, 18 sinonasal undifferentiated carcinomas (SNUC), 10 carcinomas associated with an inverted papilloma (INVC), 19 adenocarcinomas (AD) and 13 adenoid cystic carcinomas (ACC).
SOX2 amplifications were found in subsets of SCCs (37.5%), SNUCs (35.3%), INVCs (37.5%) and ADs (8.3%) but not in ACCs. SOX2 amplification resulted in increased protein expression. Patients with SOX2-amplified sinonasal carcinomas showed a significantly higher rate of tumor recurrences than SOX2 non-amplified tumors.
This is the first study assessing SOX2 amplification and expression in a large cohort of sinonasal carcinomas. As opposed to AD and ACC, SOX2 amplifications were detected in more than 1/3 of all SCCs, SNUCs and INVCs. We therefore suggest that SNUCs are molecularly closely related to SCCs and INVCs and that these entities represent a subgroup of sinonasal carcinomas relying on SOX2 acquisition during oncogenesis. SOX2 amplification appears to identify sinonasal carcinomas that are more likely to relapse after primary therapy, suggesting that these patients might benefit from a more aggressive therapy regime
Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication.
The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG's expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: (1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1(lo)SOX2(hi)BMI1(hi)OCT4(hi)) (2) Skin, testis and breast cancers (YY1(hi)SOX2(lo)BMI1(hi)OCT4(hi)) (3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1(lo)SOX2(lo)BMI1(hi)OCT4(hi)) and (4) Colorectal cancer, lymphoma and melanoma (YY1(hi)SOX2(hi)BMI1(lo)OCT4(hi)). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1
Long non-coding RNA SOX2OT: Expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis
SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA which harbors one of the major regulators of pluripotency, SOX2 gene, in its intronic region. SOX2OT gene is mapped to human chromosome 3q26.3 (Chr3q26.3) locus and is extended in a high conserved region of over 700 kb. Little is known about the exact role of SOX2OT; however, recent studies have demonstrated a positive role for it in transcription regulation of SOX2 gene. Similar to SOX2, SOX2OT is highly expressed in embryonic stem cells and down-regulated upon the induction of differentiation. SOX2OT is dynamically regulated during the embryogenesis of vertebrates, and delimited to the brain in adult mice and human. Recently, the disregulation of SOX2OT expression and its concomitant expression with SOX2 have become highlighted in some somatic cancers including esophageal squamous cell carcinoma, lung squamous cell carcinoma, and breast cancer. Interestingly, SOX2OT is differentially spliced into multiple mRNA-like transcripts in stem and cancer cells. In this review, we are describing the structural and functional features of SOX2OT, with an emphasis on its expression signature, its splicing patterns and its critical function in the regulation of SOX2 expression during development and tumorigenesis. © 2015 Shahryari, Saghaeian Jazi, Samaei and Mowla
Down-regulatory effects of miR-211 on long non-coding RNA SOX2OT and SOX2 genes in esophageal squamous cell carcinoma
Objective: MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) that transcriptionally or post-Transcriptionally regulate gene expression through degradation of their mRNA targets and/or translational suppression. However, there are a few reports on miRNA-mediated expression regulation of long ncRNAs (lncRNAs). We have previously reported a significant upregulation of the lncRNA SOX2OT and its intronic coding gene, SOX2, in esophageal squamous cell carcinoma (ESCC) tissue samples. In this study, we aimed to evaluate the effect of induced overexpression of miR-211 on SOX2OT and SOX2 expression in vitro. Materials and Methods: In this experimental study, we performed both bioinformatic and experimental analyses to examine whether these transcripts are regulated by miRNAs. From the list of potential candidate miRNAs, miR-211 was found to have complementary sequences to SOX2OT and SOX2 transcripts. To validate our finding experimentally, we transfected the NT-2 pluripotent cell line (an embryonal carcinoma stem cell) with an expression vector overexpressing miR-211. The expression changes of miR-211, SOX2OT, and SOX2 were then quantified by a real-Time polymerase chain reaction (RT-PCR) approach. Results: Compared with mock-Transfected cells, overexpression of miR-211 caused a significant down-regulation of both genes (P<0.05). Furthermore, flow-cytometry analysis revealed a significant elevation in sub-G1 cell population following ectopic expression of miR-211 in NT-2 cells. Conclusion: We report here, for the first time, the down-regulation of SOX2OT and SOX2 genes by an miRNA. Considering the vital role of SOX2OT and SOX2 genes in pluripotency and tumorigenesis, our data suggest an important and inhibitory role for miR-211 in the aforementioned processes
A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal
Identification Of Mitotically Competent SOX2+ Cells In White Matter Of Normal Human Adult Brain
SOX2 expression is linked to the undifferentiated state of stem cells in mammalian neurogenic niches. While its expression has been reported in the adult human subventricular zone (SVZ), to date it has not been detected in adult human white matter. Here we describe a population of SOX2+ cells from the white matter of the adult human temporal lobe, which proliferate and express glial markers in vitro
A dynamic mode of mitotic bookmarking by transcription factors.
During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking
Local lung hypoxia determines epithelial fate decisions during alveolar regeneration.
After influenza infection, lineage-negative epithelial progenitors (LNEPs) exhibit a binary response to reconstitute epithelial barriers: activating a Notch-dependent ΔNp63/cytokeratin 5 (Krt5) remodelling program or differentiating into alveolar type II cells (AEC2s). Here we show that local lung hypoxia, through hypoxia-inducible factor (HIF1α), drives Notch signalling and Krt5pos basal-like cell expansion. Single-cell transcriptional profiling of human AEC2s from fibrotic lungs revealed a hypoxic subpopulation with activated Notch, suppressed surfactant protein C (SPC), and transdifferentiation toward a Krt5pos basal-like state. Activated murine Krt5pos LNEPs and diseased human AEC2s upregulate strikingly similar core pathways underlying migration and squamous metaplasia. While robust, HIF1α-driven metaplasia is ultimately inferior to AEC2 reconstitution in restoring normal lung function. HIF1α deletion or enhanced Wnt/β-catenin activity in Sox2pos LNEPs blocks Notch and Krt5 activation, instead promoting rapid AEC2 differentiation and migration and improving the quality of alveolar repair
The effect of microRNA-375 overexpression, an inhibitor of Helicobacter pylori-induced carcinogenesis, on lncRNA SOX2OT
Background: Helicobacter pylori is a major human pathogenic bacterium in gastric mucosa. Although the association between gastric cancer and H. pylori has been well-established, the molecular mechanisms underlying H. pylori-induced carcinogenesis are still under investigation. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the posttranscriptional level. Recently, studies have revealed that miRNAs are involved in immune response and host cell response to bacteria. Also, microRNA-375 (miR-375) is a key regulator of epithelial properties that are necessary for securing epithelium-immune system crosstalk. It has been recently reported that miR-375 acts as an inhibitor of H. pylori-induced gastric carcinogenesis. There are few reports on miRNA-mediated targeting long noncoding RNAs (lncRNAs). Objectives: This study aimed to examine the possible effect of miR-375 as an inhibitor of H. pylori-induced carcinogenesis on the expression of lncRNA SOX2 overlapping transcript (SOX2OT) and SOX2, a master regulator of pluripotency of cancer stem cells. Materials and Methods: In a model cell line, NT-2 was transfected with the constructed expression vector pEGFP-C1 contained miR- 375. The RNA isolations and cDNA synthesis were performed after 48 hours of transformation. Expression of miR-375 and SOX2OT and SOX2 were quantified using real-time polymerase chain reaction and compared with control cells transfected with pEGFP-C1-Mock clone. Cell cycle modification was also compared after transfections using the flow cytometry analysis. Results: Following ectopic expression of miR-375, SOX2OT and SOX2 expression analysis revealed a significant decrease in their expression level (P < 0.05) in NT-2 cells compared to the control. Cell cycle analysis following ectopic expression of miR-375 in the NT-2 cells using propidium iodine staining revealed significant extension in sub-G1 cell cycle. Conclusions: This is the first report to show down-regulation of SOX2OT and SOX2 following induced expression of miR-375. This findingmaysuggest expression regulation potential between different classes of ncRNAs, for example between miR-375andSOX2OT. This data not only extends our understanding of possible ncRNA interactions in cancers but also may open novel investigation lines towards elucidation of molecular mechanisms controlling H. pylori inflammation and carcinogenesis. © 2016, Ahvaz Jundishapur University of Medical Sciences
- …
