2,340 research outputs found

    Universal Approximation with Deep Narrow Networks

    Full text link
    The classical Universal Approximation Theorem holds for neural networks of arbitrary width and bounded depth. Here we consider the natural `dual' scenario for networks of bounded width and arbitrary depth. Precisely, let nn be the number of inputs neurons, mm be the number of output neurons, and let ρ\rho be any nonaffine continuous function, with a continuous nonzero derivative at some point. Then we show that the class of neural networks of arbitrary depth, width n+m+2n + m + 2, and activation function ρ\rho, is dense in C(K;Rm)C(K; \mathbb{R}^m) for KβŠ†RnK \subseteq \mathbb{R}^n with KK compact. This covers every activation function possible to use in practice, and also includes polynomial activation functions, which is unlike the classical version of the theorem, and provides a qualitative difference between deep narrow networks and shallow wide networks. We then consider several extensions of this result. In particular we consider nowhere differentiable activation functions, density in noncompact domains with respect to the LpL^p-norm, and how the width may be reduced to just n+m+1n + m + 1 for `most' activation functions.Comment: Accepted at COLT 202

    Artificial Neural Networks

    Get PDF
    Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods.
    • …
    corecore