6 research outputs found

    Performance bounds on matched-field methods for source localization and estimation of ocean environmental parameters

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2001Matched-field methods concern estimation of source location and/or ocean environmental parameters by exploiting full wave modeling of acoustic waveguide propagation. Typical estimation performance demonstrates two fundamental limitations. First, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), leading to a threshold performance behavior. Second, most matched-field algorithms show a strong sensitivity to environmental/system mismatch, introducing some biased estimates at high SNR. In this thesis, a quantitative approach for ambiguity analysis is developed so that different mainlobe and sidelobe error contributions can be compared at different SNR levels. Two large-error performance bounds, the Weiss-Weinstein bound (WWB) and Ziv-Zakai bound (ZZB), are derived for the attainable accuracy of matched-field methods. To include mismatch effects, a modified version of the ZZB is proposed. Performance analyses are implemented for source localization under a typical shallow water environment chosen from the Shallow Water Evaluation Cell Experiments (SWellEX). The performance predictions describe the simulations of the maximum likelihood estimator (MLE) well, including the mean square error in all SNR regions as well as the bias at high SNR. The threshold SNR and bias predictions are also verified by the SWellEX experimental data processing. These developments provide tools to better understand some fundamental behaviors in matched-field performance and provide benchmarks to which various ad hoc algorithms can be compared.Financial support for my research was provided by the Office of Naval Research and the WHOI Education Office

    A Nonparametric Approach to Segmentation of Ladar Images

    Get PDF
    The advent of advanced laser radar (ladar) systems that record full-waveform signal data has inspired numerous inquisitions which aspire to extract additional, previously unavailable, information about the illuminated scene from the collected data. The quality of the information, however, is often related to the limitations of the ladar camera used to collect the data. This research project uses full-waveform analysis of ladar signals, and basic principles of optics, to propose a new formulation for an accepted signal model. A new waveform model taking into account backscatter reflectance is the key to overcoming specific deficiencies of the ladar camera at hand, namely the ability to discern pulse-spreading effects of elongated targets. A concert of non-parametric statistics and familiar image processing methods are used to calculate the orientation angle of the illuminated objects, and the deficiency of the hardware is circumvented. Segmentation of the various ladar images performed as part of the angle estimation, and this is shown to be a new and effective strategy for analyzing the output of the AFIT ladar camera

    Applied stochastic eigen-analysis

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007The first part of the dissertation investigates the application of the theory of large random matrices to high-dimensional inference problems when the samples are drawn from a multivariate normal distribution. A longstanding problem in sensor array processing is addressed by designing an estimator for the number of signals in white noise that dramatically outperforms that proposed by Wax and Kailath. This methodology is extended to develop new parametric techniques for testing and estimation. Unlike techniques found in the literature, these exhibit robustness to high-dimensionality, sample size constraints and eigenvector misspecification. By interpreting the eigenvalues of the sample covariance matrix as an interacting particle system, the existence of a phase transition phenomenon in the largest (“signal”) eigenvalue is derived using heuristic arguments. This exposes a fundamental limit on the identifiability of low-level signals due to sample size constraints when using the sample eigenvalues alone. The analysis is extended to address a problem in sensor array processing, posed by Baggeroer and Cox, on the distribution of the outputs of the Capon-MVDR beamformer when the sample covariance matrix is diagonally loaded. The second part of the dissertation investigates the limiting distribution of the eigenvalues and eigenvectors of a broader class of random matrices. A powerful method is proposed that expands the reach of the theory beyond the special cases of matrices with Gaussian entries; this simultaneously establishes a framework for computational (non-commutative) “free probability” theory. The class of “algebraic” random matrices is defined and the generators of this class are specified. Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue distribution and, for a subclass, the limiting conditional “eigenvector distribution.” The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form. The method is applied to predict the deterioration in the quality of the sample eigenvectors of large algebraic empirical covariance matrices due to sample size constraints.I am grateful to the National Science Foundation for supporting this work via grant DMS-0411962 and the Office of Naval Research Graduate Traineeship awar
    corecore