252,123 research outputs found

    Low-density genotype panel for both parentage verification and discovery in a multi-breed sheep population

    Get PDF
    peer-reviewedThe generally low usage of artificial insemination and single-sire mating in sheep, compounded by mob lambing (and lambing outdoors), implies that parentage assignment in sheep is challenging. The objective here was to develop a low-density panel of single nucleotide polymorphisms (SNPs) for accurate parentage verification and discovery in sheep. Of particular interest was where SNP selection was limited to only a subset of chromosomes, thereby eliminating the ability to accurately impute genome-wide denser marker panels. Data used consisted of 10,933 candidate SNPs on 9,390 purebred sheep. These data consisted of 1,876 validated genotyped sire–offspring pairs and 2,784 validated genotyped dam–offspring pairs. The SNP panels developed consisted of 87 SNPs to 500 SNPs. Parentage verification and discovery were undertaken using 1) exclusion, based on the sharing of at least one allele between candidate parent–offspring pairs, and 2) a likelihood-based approach. Based on exclusion, allowing for one discordant offspring–parent genotype, a minimum of 350 SNPs was required when the goal was to unambiguously identify the true sire or dam from all possible candidates. Results suggest that, if selecting SNPs across the entire genome, a minimum of 250 carefully selected SNPs are required to ensure that the most likely selected parent (based on the likelihood approach) was, in fact, the true parent. If restricting the SNPs to just a subset of chromosomes, the recommendation is to use at least a 300-SNP panel from at least six chromosomes, with approximately an equal number of SNPs per chromosome

    Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study

    Get PDF
    BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1. In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging

    Genetic Variation in FADS Genes and Plasma Cholesterol Levels in 2-Year-Old Infants

    Get PDF
    Single nucleotide polymorphisms (SNPs) in genes involved in fatty acid metabolism (FADS1 FADS2 gene cluster) are associated with plasma lipid levels. We aimed to investigate whether these associations are already present early in life and compare the relative contribution of FADS SNPs vs traditional (non-genetic) factors as determinants of plasma lipid levels. Information on infants' plasma total cholesterol levels, genotypes of five FADS SNPs (rs174545, rs174546, rs174556, rs174561, and rs3834458), anthropometric data, maternal characteristics, and breastfeeding history was available for 521 2-year-old children from the KOALA Birth Cohort Study. For 295 of these 521 children, plasma HDLc and non-HDLc levels were also known. Multivariable linear regression analysis was used to study the associations of genetic and non-genetic determinants with cholesterol levels. All FADS SNPs were significantly associated with total cholesterol levels. Heterozygous and homozygous for the minor allele children had about 4% and 8% lower total cholesterol levels than major allele homozygotes. In addition, homozygous for the minor allele children had about 7% lower HDLc levels. This difference reached significance for the SNPs rs174546 and rs3834458. The associations went in the same direction for non-HDLc, but statistical significance was not reached. The percentage of total variance of total cholesterol levels explained by FADS SNPs was relatively low (lower than 3%) but of the same order as that explained by gender and the non-genetic determinants together. FADS SNPs are associated with plasma total cholesterol and HDLc levels in preschool children. This brings a new piece of evidence to explain how blood lipid levels may track from childhood to adulthood. Moreover, the finding that these SNPs explain a similar amount of variance in total cholesterol levels as the non-genetic determinants studied reveals the potential importance of investigating the effects of genetic variations in early life

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    Joint analysis of SNP and gene expression data in genetic association studies of complex diseases

    Full text link
    Genetic association studies have been a popular approach for assessing the association between common Single Nucleotide Polymorphisms (SNPs) and complex diseases. However, other genomic data involved in the mechanism from SNPs to disease, for example, gene expressions, are usually neglected in these association studies. In this paper, we propose to exploit gene expression information to more powerfully test the association between SNPs and diseases by jointly modeling the relations among SNPs, gene expressions and diseases. We propose a variance component test for the total effect of SNPs and a gene expression on disease risk. We cast the test within the causal mediation analysis framework with the gene expression as a potential mediator. For eQTL SNPs, the use of gene expression information can enhance power to test for the total effect of a SNP-set, which is the combined direct and indirect effects of the SNPs mediated through the gene expression, on disease risk. We show that the test statistic under the null hypothesis follows a mixture of χ2\chi^2 distributions, which can be evaluated analytically or empirically using the resampling-based perturbation method. We construct tests for each of three disease models that are determined by SNPs only, SNPs and gene expression, or include also their interactions. As the true disease model is unknown in practice, we further propose an omnibus test to accommodate different underlying disease models. We evaluate the finite sample performance of the proposed methods using simulation studies, and show that our proposed test performs well and the omnibus test can almost reach the optimal power where the disease model is known and correctly specified. We apply our method to reanalyze the overall effect of the SNP-set and expression of the ORMDL3 gene on the risk of asthma.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS690 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore