71,440 research outputs found

    Multiplicity of the Protostar Serpens SMM 1 Revealed by Millimeter Imaging

    Full text link
    The Serpens SMM 1 region was observed in the 6.9 mm continuum with an angular resolution of about 0.6 arcsec. Two sources were found to have steep positive spectra suggesting emission from dust. The stronger one, SMM 1a, is the driving source of the bipolar jet known previously, and the mass of the dense molecular gas traced by the millimeter continuum is about 8 solar mass. The newly found source, SMM 1b, positionally coincides with the brightest mid-IR source in this region, which implies that SMM 1b is yet another young stellar object. SMM 1b seems to be less deeply embedded than SMM 1a. SMM 1 is probably a protobinary system with a projected separation of 500 AU

    Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    Full text link
    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a voltage between the two magnetic electrodes. Moreover, the switching is reflected in the corresponding current-voltage characteristics.Comment: 5 pages, 4 figures, final version as publishe

    Efficient spin-current injection in single-molecule magnet junctions

    Full text link
    We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normalmetallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.Comment: 4 figure

    Constraints on the presence of water megamaser emission in z~2.5 ultraluminous infrared starburst galaxies

    Full text link
    We present Expanded Very Large Array and Arecibo observations of two lensed submm galaxies at z~2.5, in order to search for redshifted 22.235 GHz water megamaser emission. Both SMM J14011+0252 and SMM J16359+6612 have multi-wavelength characteristics consistent with ongoing starburst activity, as well as CO line emission indicating the presence of warm molecular gas. Our observations do not reveal any evidence for H2O megamaser emission in either target, while the lensing allows us to obtain deep limits to the H_2O line luminosities, L(H2O) < 7470 Lsun (3-sigma) in the case of SMM J14011+0252, and L(H2O) < 1893 Lsun for SMM J16359+6612, assuming linewidths of 80 km/s. Our search for, and subsequent non-detection of H2O megamaser emission in two strongly lensed starburst galaxies, rich in gas and dust, suggests that such megamaser emission is not likely to be common within the unlensed population of high-redshift starburst galaxies. We use the recent detection of strong H2O megamaser emission in the lensed quasar, MG J0414+0534 at z = 2.64 to make predictions for future EVLA C-band surveys of H2O megamaser emission in submm galaxies hosting AGN.Comment: AJ accepte

    Tapered Simplified Modal Method for Analysis of Non-rectangular Gratings

    Full text link
    The Simplified Modal Method (SMM) provides a quick and intuitive way to analyze the performance of gratings of rectangular shapes. For non-rectangular shapes, a version of SMM has been developed, but it applies only to the Littrow-mounting incidence case and it neglects reflection. Here, we use the theory of mode-coupling in a tapered waveguide to improve SMM so that it applies to non-rectangular gratings at arbitrary angles of incidence. Moreover, this new 'Tapered Simplified Modal Method' (TSMM) allows us to properly account for reflected light. We present here the analytical development of the theory and numerical simulations, demonstrating the validity of the method.Comment: 13 pages, 8 figure

    Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism

    Get PDF
    Autism Spectrum Disorders (ASDs) are often associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) have a specific visibility. While the identification and the quantification of SMM patterns remain complex, its automation would provide support to accurate tuning of the intervention in the therapy of autism. Therefore, it is essential to develop automatic SMM detection systems in a real world setting, taking care of strong inter-subject and intra-subject variability. Wireless accelerometer sensing technology can provide a valid infrastructure for real-time SMM detection, however such variability remains a problem also for machine learning methods, in particular whenever handcrafted features extracted from accelerometer signal are considered. Here, we propose to employ the deep learning paradigm in order to learn discriminating features from multi-sensor accelerometer signals. Our results provide preliminary evidence that feature learning and transfer learning embedded in the deep architecture achieve higher accurate SMM detectors in longitudinal scenarios.Comment: Presented at 5th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (MLINI), 2015, (http://arxiv.org/html/1605.04435), Report-no: MLINI/2015/1

    GMOS Spectroscopy of SCUBA Galaxies Behind A851

    Get PDF
    We have identified counterparts to two submillimeter (submm) sources, SMM J09429+4659 and SMM J09431+4700, seen through the core of the z=0.41 cluster Abell 851. We employ deep 1.4-GHz observations and the far-infrared/radio correlation to refine the submm positions and then optical and near-infrared imaging to locate their counterparts. We identify an extremely red counterpart to SMM J09429+4659, while GMOS spectroscopy with Gemini-North shows that the R=23.8 radio source identified with SMM J09431+4700 is a hyperluminous infrared galaxy (L_FIR~1.5x10^13 L_sun) at z=3.35, the highest spectroscopic redshift so far for a galaxy discovered in the submm. The emission line properties of this galaxy are characteristic of a narrow-line Seyfert-1, although the lack of detected X-ray emission in a deep XMM-Newton observation suggests that the bulk of the luminosity of this galaxy is derived from massive star formation. We suggest that active nuclei, and the outflows they engender, may be an important part of the evolution of the brightest submm galaxies at high redshifts.Comment: to appear in the Oct 1 issue of ApJ Letter
    corecore