2 research outputs found

    Flexible shape-memory alloy-based actuator: Mechanical design optimization according to application

    Get PDF
    This article belongs to the Special Issue Actuators Based on Shape Memory Alloys.New robotic applications, among others, in medical and related fields, have in recent years boosted research in the development of new actuators in the search for solutions that are lighter and more flexible than conventional actuators. Shape-Memory Alloy (SMA)-based actuators present characteristics that make them an excellent alternative in a wide variety of applications. This paper presents the design, tests (with the control description) and analysis of various configurations of actuators based on SMA wires: flexible SMA actuators, different mechanical design to multiply the displacement and different configurations for actuators with multiple SMA wires. The performance of the actuators has been analyzed using wires of different activation temperatures. The influence of the Bowden sheath of the flexible actuator has been tested, as has the thermal behavior of actuators with several wires. This work has allowed determination of the most effective configuration for the development of a flexible actuator based on SMA, from the point of view of dimensions, efficiency, and work frequency. This type of actuator has been applied in the development of soft robots and light robotic exoskeletons.The research leading to these results has received funding from the Exoesqueleto para Diagnostico y Asistencia en Tareas de Manipulación (DPI2016-75346-R) Spanish research project and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by ¿Programas de Actividades I+D en la Comunidad de Madrid¿ and cofunded by Structural Funds of the EU

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test
    corecore